首页 | 本学科首页   官方微博 | 高级检索  
     


Retrograde signaling from the brain to the retina modulates the termination of the light response in Drosophila
Authors:Rajaram Shantadurga  Scott Robert L  Nash Howard A
Affiliation:Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-3736, USA.
Abstract:A critical factor in visual function is the speed with which photoreceptors (PRs) return to the resting state when light intensity dims. Several elements subserve this process, many of which promote the termination of the phototransduction cascade. Although the known elements are intrinsic to PRs, we have found that prompt restoration to the resting state of the Drosophila electroretinogram can require effective communication between the retina and the underlying brain. The requirement is seen more dramatically with long than with short light pulses, distinguishing the phenomenon from gross disruption of the termination machinery. The speed of recovery is affected by mutations (in the Hdc and ort genes) that prevent PRs from transmitting visual information to the brain. It is also affected by manipulation (using either drugs like neostigmine or genetic tools to inactivate neurotransmitter release) of cholinergic signals that arise in the brain. Intracellular recordings support the hypothesis that PRs are the target of this communication. We infer that signaling from the retina to the optic lobe prompts a feedback signal to retinal PRs. Although the mechanism of this retrograde signaling remains to be discerned, the phenomenon establishes a previously unappreciated mode of control of the temporal responsiveness of a primary sensory neuron.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号