首页 | 本学科首页   官方微博 | 高级检索  
检索        


Lateral entorhinal,perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: A current source density study
Authors:Kevin J Canning  L Stan Leung
Abstract:In urethane-anesthetized rats, cortical regions which provide distal dendritic excitation of the dentate gyrus and CA1 of the dorsal hippocampus were studied using current source density analysis. Electrical stimulation of the lateral perforant path (LPP) in the lateral angular bundle, lateral entorhinal cortex (LEC), and amygdala-entorhinal transition (TR) resulted in a current sink in the outer molecular layer of the dentate gyrus accompanied by proximal sources; this sink-source pattern is distinctly different from the source-sink-source pattern evoked by medial perforant path stimulation. The progressive decrease of the sink latency following stimulation of the TR, LEC, and LPP (11.6, 7.8, and 3.6 ms, respectively, at the dorsal blade of the dentate gyrus) suggests a possible sequence of orthodromic activation of these structures. Stimulation of the LEC or TR (collectively termed cortical stimulation) differed from LPP (fiber) stimulation. A low threshold and small chronaxie were characteristic of fiber rather than cortical stimulation. In addition, cortical stimulation, possibly through excitation of intracortical circuits, evoked larger paired-pulse facilitation of the excitatory postsynaptic currents in dentate gyrus and more symmetric excitation of the dorsal and ventral blades of the dentate gyrus as compared to fiber stimulation. Stimulation of the perirhinal cortex (PRh) evoked a short-latency sink in the outer molecular layer of the dentate gyrus with no paired-pulse facilitation, similar to fiber stimulation. A distal dendritic CA1 sink was observed after LPP but not after PRh stimulation. An ibotenic acid injection that lesioned almost all the cells in the perirhinal cortex confirmed the hypothesis that PRh stimulation activated fibers of passage, perhaps in the rostral ventrolateral angular bundle. We conclude that the PRh does not provide a significant excitatory input to the DG or CA1. We have found distinct dendritic excitation of the dentate gyrus by the lateral versus medial perforant paths, and by fiber (LPP and MPP) versus cortical (LEC and TR) stimulation. We also emphasize that processing in the entorhinal cortex is important in the temporal shaping of the signals afferent to the hippocampus. Hippocampus 1997;7:643–655. © 1997 Wiley-Liss, Inc.
Keywords:angular bundle  perforant path  distal dendrites  paired pulse facilitation  ibotenic acid lesion  electrophysiology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号