首页 | 本学科首页   官方微博 | 高级检索  
     


Phencyclidine and dizocilpine modulate dopamine release from rat nucleus accumbens via sigma receptors
Authors:Ault D T  Werling L L
Affiliation:Neuroscience Program, The George Washington University Medical Center, Washington, DC 20037, USA.
Abstract:Phencyclidine (PCP) binds to many sites in brain, including PCP receptors located within the N-methyl-D-aspartate (NMDA) receptor-operated cation channel and sigma (sigma) receptors. In this study, we compare mechanisms by which PCP, dizocilpine (MK-801), the prototypical sigma receptor agonist (+)-pentazocine, and the proposed endogenous sigma receptor ligand neuropeptide Y regulate potassium (K(+))-stimulated [3H]dopamine release from slices of rat nucleus accumbens. (+)-Pentazocine inhibits K(+)-stimulated [3H]dopamine release, and neuropeptide Y enhances it. Both effects are blocked by sigma(1) and neuropeptide Y receptor antagonists, suggesting possible inverse agonism at a subpopulation of sigma/neuropeptide Y receptors. In contrast, PCP and MK-801 both enhance K(+)-stimulated [3H]dopamine release via sigma(1) and sigma(2) receptor subtypes, as demonstrated by antagonist sensitivity. Regulation of release by both (+)-pentazocine and neuropeptide Y persists in the presence of tetrodotoxin suggests that the sigma/neuropeptide Y receptors mediating the modulation are located presynaptically on dopaminergic nerve terminals, but tetrodotoxin eliminates regulation by PCP and MK-801, suggesting that receptors mediating their effects are located upstream from dopaminergic nerve terminals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号