首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-level basis selection of wavelet packet decomposition tree for heart sound classification
Authors:Fatemeh Safara  Shyamala Doraisamy  Azreen Azman  Azrul Jantan  Asri Ranga Abdullah Ramaiah
Affiliation:1. Department of Multimedia, Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia;2. Department of Computer Engineering, Islamic Azad University, Islamshahr Branch, Tehran, Iran;3. Cardiology Department, Serdang Hospital, Serdang, Jalan Puchong, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Abstract:Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies.
Keywords:AR, aortic regurgitation   AS, aortic stenosis   BBS, best basis selection   DFT, discrete wavelet transform   DWT, discrete wavelet transform   ECG, electrocardiographic signal   ENG, energy   ET, energy threshold   LDB, local discriminant basis   MLBS, multi-level basis selection   MR, mitral regurgitation   PCG, phonocardiographic signal   RBF, radial basis function   RENG, relative energy   SLBS, single-level basis selection   SNR, signal -to-noise ratio   STFT, short time fourier transform   SVM, support vector machine   WPT, wavelet packet transform
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号