首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrodynamic steering effects in protein association.
Authors:D Brune and S Kim
Affiliation:Department of Chemical Engineering, University of Wisconsin, Madison 53705.
Abstract:Protein-ligand reaction rates are often limited by the rate of diffusional encounter of the protein and ligand in solution. Reaction rates, however, can be much greater than expected, given the necessity for correct orientation before reaction. A number of forces can affect the orientation of the protein and ligand in solution, and thus increase the reaction rate. We have considered hydrodynamic forces, produced when water molecules between protein and ligand must be pushed out of the way to allow their encounter. We have used the cleft enzymes as a model system, as they could be expected to show strong hydrodynamic effects. One particular type of hydrodynamic interaction stands out: a steering torque which occurs when the enzyme and substrate move toward each other in solution. The magnitude of this steering torque is compared to the mutual torque experienced by interacting "protein-sized" dipoles in solution. A simple model is used to demonstrate that the hydrodynamic steering torque can be 2 orders of magnitude greater than the electrostatic torque.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号