首页 | 本学科首页   官方微博 | 高级检索  
检索        


Sequence independent interferon‐α induction by multimerized phosphodiester DNA depends on spatial regulation of Toll‐like receptor‐9 activation in plasmacytoid dendritic cells
Authors:Tobias Haas  Frank Schmitz  Antje Heit  Hermann Wagner
Institution:Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Trogerstrasse, Munich, Germany
Abstract:Single‐stranded versus multimeric phosphorothioate‐modified CpG oligodeoxynucleotides (ODNs) undergo differential endosomal trafficking upon uptake into plasmacytoid dendritic cells (pDCs), correlating with Toll‐like receptor‐9‐dependent pDC maturation/activation (single‐stranded B‐type CpG ODN) or interferon‐α (IFN‐α) induction (multimeric A‐type CpG ODN), respectively. As was recently shown, IFN‐α production, other than by CpG ODNs, can also be induced in a sequence‐independent manner by phosphodiester (PD) ODNs multimerized by 3′ poly‐guanosine (poly‐G) tails. We investigate here the type of endosomal trafficking responsible for IFN‐α induction by natural PD ODN ligands. We show that 3′ extension with poly‐G tails leads to multimerization of single‐stranded PD ODNs and to enhanced cellular uptake into pDCs. While monomeric PD ODNs, which induce CpG‐dependent Toll‐like receptor‐9 stimulation and pDC maturation/activation, localized to late endosomal/lysosomal compartments, the poly‐G multimerized PD ODNs, which induce CpG‐independent IFN‐α production, located to vesicles with a distinct, ‘early’ endosomal phenotype. We conclude that poly‐G‐mediated multimerization of natural PD ODNs allows for sequence‐independent, Toll‐like receptor‐9‐dependent IFN‐α induction in pDCs by combining three distinct effects: relative protection of sensitive PD ODNs from extracellular and intracellular DNase degradation, enhanced cellular uptake and preferential early endosomal compartmentation.
Keywords:interferon‐α  production  plasmacytoid dendritic cells  phosphodiester DNA  sequence independence  Toll‐like receptor‐9
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号