首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of binocular retinal lesions on CRMP2 and CRMP4 but not Dyn I and Syt I expression in adult cat area 17
Authors:Cnops Lieselotte  Hu Tjing-Tjing  Eysel Ulf T  Arckens Lutgarde
Affiliation:Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
Abstract:Removal of retinal input from a restricted region of adult cat visual cortex leads to a substantial reorganization of the retinotopy within the sensory-deprived cortical lesion projection zone (LPZ). Still little is known about the molecular mechanisms underlying this cortical map reorganization. We chose two members of the collapsin response mediator protein (CRMP) family, CRMP2 and CRMP4, because of their involvement in neurite growth, and compared gene and protein expression levels between normal control and reorganizing visual cortex upon induction of central retinal lesions. Parallel analysis of Dynamin I (Dyn I) and Synaptotagmin I (Syt I), two molecules implicated in the exocytosis-endocytosis cycle, was performed because changes in neurotransmitter release have been implicated in cortical plasticity. Western blotting and real-time polymerase chain reaction revealed a clear time-dependent effect of retinal lesioning on CRMP2 and CRMP4 expression, with maximal impact 2 weeks post-lesion. Altered CRMP levels were not a direct consequence of decreased visual activity in the LPZ as complete surgical removal of retinal input to one hemisphere had no effect on CRMP2 or CRMP4 expression. Thus, CRMP expression is correlated to cortical reorganization following partial deafferentation of adult visual cortex. In contrast, Dyn I and Syt I were not influenced and thereby do not promote exocytosis-endocytosis cycle modifications in adult cat cortical plasticity.
Keywords:adult plasticity    collapsin response mediator protein    Dynamin I    Synaptotagmin I    visual cortex
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号