首页 | 本学科首页   官方微博 | 高级检索  
检索        


Evaluation of short‐TE 1H MRSI for quantification of metabolites in the prostate
Authors:Meer Basharat  Maysam Jafar  Nandita M deSouza  Geoffrey S Payne
Institution:CRUK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, , Sutton, Surrey, UK
Abstract:Back‐to‐back 1H MRSI scans, using an endorectal and phased‐array coil combination, were performed on 18 low‐risk patients with prostate cancer at 3 T, employing TEs of 32 and 100 ms in order to compare metabolite visualization at each TE. Outer‐volume suppression of lipid signals was performed using regional saturation (REST) slabs and the quantification of spectra at both TEs was achieved with the quantitation using quantum estimation (QUEST) routine. Metabolite nulling experiments in an additional five patients found that there were negligible macromolecule background signals in prostate spectra at TE = 32 ms. Metabolite visibility was judged using the criterion Cramér–Rao lower bound (CRLB)/amplitude < 20%, and metabolite concentrations were corrected for relaxation effects and referenced to the data acquired in corresponding water‐unsuppressed MRSI scans. For the first time, the prostate metabolites spermine and myo‐inositol were quantified individually in vivo, together with citrate, choline and creatine. All five metabolite visibilities were higher in TE = 32 ms MRSI than in TE = 100 ms MRSI. At TE = 32 ms, citrate was visible in 99.0% of lipid‐free spectra, whereas, at TE = 100 ms, no metabolite simulation of citrate matched the in vivo peaks. Spermine, choline and creatine were visualised separately in 30.4% more spectra at TE = 32 ms than at TE = 100 ms, and myo‐inositol in 72.5% more spectra. T2 values were calculated for spermine (53 ± 16 ms), choline (62 ± 17 ms) and myo‐inositol (90 ± 48 ms). Data from the TE = 32 ms spectra showed that the concentrations of citrate and spermine secretions were positively correlated in both the peripheral zone and central gland (R2 = 0.73 and R2 = 0.43, respectively), and that the citrate content was significantly higher in the former at 64 ± 22 mm than in the latter at 32 ± 16 mm (p = 0.01). However, lipid contamination at TE = 32 ms was substantial; therefore, to make clinical use of the greater visualisation of prostate metabolites at TE = 32 ms rather than at TE = 100 ms, three‐dimensional MRSI at TE = 32 ms with effective lipid suppression must be implemented. ©2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.
Keywords:prostate  spectroscopy  citrate  spermine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号