首页 | 本学科首页   官方微博 | 高级检索  
检索        


Multi-task learning for the segmentation of organs at risk with label dependence
Institution:1. Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, P. R. China;2. Department of Radiotherapy, West China Hospital China
Abstract:Automatic segmentation of organs at risk is crucial to aid diagnoses and remains a challenging task in medical image analysis domain. To perform the segmentation, we use multi-task learning (MTL) to accurately determine the contour of organs at risk in CT images. We train an encoder-decoder network for two tasks in parallel. The main task is the segmentation of organs, entailing a pixel-level classification in the CT images, and the auxiliary task is the multi-label classification of organs, entailing an image-level multi-label classification of the CT images. To boost the performance of the multi-label classification, we propose a weighted mean cross entropy loss function for the network training, where the weights are the global conditional probability between two organs. Based on MTL, we optimize the false positive filtering (FPF) algorithm to decrease the number of falsely segmented organ pixels in the CT images. Specifically, we propose a dynamic threshold selection (DTS) strategy to prevent true positive rates from decreasing when using the FPF algorithm. We validate these methods on the public ISBI 2019 segmentation of thoracic organs at risk (SegTHOR) challenge dataset and a private medical organ dataset. The experimental results show that networks using our proposed methods outperform basic encoder-decoder networks without increasing the training time complexity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号