首页 | 本学科首页   官方微博 | 高级检索  
     


Tracing in 2D to reduce the annotation effort for 3D deep delineation of linear structures
Affiliation:Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne, Station 15, Lausanne CH-1015, Switzerland
Abstract:The difficulty of obtaining annotations to build training databases still slows down the adoption of recent deep learning approaches for biomedical image analysis. In this paper, we show that we can train a Deep Net to perform 3D volumetric delineation given only 2D annotations in Maximum Intensity Projections (MIP) of the training volumes. This significantly reduces the annotation time: We conducted a user study that suggests that annotating 2D projections is on average twice as fast as annotating the original 3D volumes. Our technical contribution is a loss function that evaluates a 3D prediction against annotations of 2D projections. It is inspired by space carving, a classical approach to reconstructing complex 3D shapes from arbitrarily-positioned cameras. It can be used to train any deep network with volumetric output, without the need to change the network’s architecture. Substituting the loss is all it takes to enable 2D annotations in an existing training setup. In extensive experiments on 3D light microscopy images of neurons and retinal blood vessels, and on Magnetic Resonance Angiography (MRA) brain scans, we show that, when trained on projection annotations, deep delineation networks perform as well as when they are trained using costlier 3D annotations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号