Suppression of tumor metastasis by blockade of transforming growth factor beta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice |
| |
Authors: | Shah Ali H Tabayoyong William B Kundu Shilajit D Kim Seong-Jin Van Parijs Luk Liu Victoria C Kwon Eugene Greenberg Norman M Lee Chung |
| |
Affiliation: | Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA. |
| |
Abstract: | Transforming growth factor B (TGF-beta) is a potent immunosuppressive cytokine that is frequently associated with mechanisms of tumor escape from immunosurveillance. We report that transplantation of murine bone marrow (BM) expressing a dominant-negative TGF-beta type II receptor (TbetaRIIDN) leads to the generation of mature leukocytes capable of a potent antitumor response in vivo. Hematopoietic precursors in murine BM from donor mice were rendered insensitive to TGF-beta via retroviral expression of the TbetaRIIDN construct and were transplanted in C57BL/6 mice before tumor challenge. After i.v. administration of 5 x 10(5) B16-F10 murine melanoma cells into TbetaRIIDN-BM transplanted recipients, survival of challenged mice at 45 days was 70% (7 of 10) versus 0% (0 of 10) for vector-control treated mice, and surviving TbetaRIIDN-BM mice showed a virtual absence of metastatic lesions in the lung. We also investigated the utility of the TGF-beta-targeted approach in a mouse metastatic model of prostate cancer, TRAMP-C2. Treatment of male C57BL/6 mice with TbetaRIIDN-BM resulted in the survival of 80% (4 of 5) of recipients versus 0% (0 of 5) in green fluorescent protein-BM recipients or wild-type controls. Cytolytic T-cell assays indicate that a specific T-cell response against B16-F10 cells was generated in the TbetaRIIDN-BM-treated mice, suggesting that a gene therapy approach to inducing TGF-beta insensitivity in transplanted BM cells may be a potent anticancer therapy. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|