首页 | 本学科首页   官方微博 | 高级检索  
检索        


Infectious tolerance mediated by CD8+ T-suppresor cells after UV-B-irradiated donor-specific transfusion and rat heart transplantation
Authors:Witkowski P  Liu J W  Jin M X  Liu Z  Suciu-Foca N  Hardy M A
Institution:Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. pw2004@columbia.edu
Abstract:AIMS: CD8+CD28- human T-suppressor cells (Ts), which can be generated in vitro, act directly on APC rendering them tolerogenic to unprimed and primed CD4+ T cells. The aim of this study was to investigate the possibility that CD8+ T cells mediate the induction of tolerance in a heart transplantation model in rodents. MATERIALS AND METHODS: Blood from Lewis rats was UV-B-irradiated and transfused into ACI recipients on days -21, -14, and -7 before heart allograft transplantation on day 0. CD4(+) and CD8(+) T cells were positively selected from ACI rats, which had tolerated Lewis heart allografts for more than 100 days and were adoptively transferred to naive ACI rats pretreated (day -1) with gamma irradiation. These ACI rats underwent transplantation with Lewis hearts 24 hours after adoptive transfer of putative T-suppressor cells. RESULTS: Adoptive transfer of CD8(+) T cells from tolerant ACI to naive ACI rats significantly prolonged Lewis heart mean allograft survival time (MST +/- SD) to 69 +/- 13 days as compared with 15 +/- 1 and 14 +/- 1 days in animals adoptively transferred with CD4+ T cells or untreated controls, respectively (P < .001). Similarly, adoptive transfer of CD8(+) T cells from secondary ACI recipients to naive syngeneic animals also significantly prolonged survival of heart allografts to MST +/- SD of 72 +/- 4 for CD8(+) and 15 +/- 4 days for CD4(+) T cells (P < .001). CONCLUSIONS: These data demonstrate that allogeneic tolerance induced in ACI recipients by treatment with UV-B-irradiated blood from Lewis donors is mediated by CD8+ T-suppressor cells.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号