首页 | 本学科首页   官方微博 | 高级检索  
     


Role of central nervous system neurotransmitters in mediating the effects of morphine on growth hormone-and prolactin-secretion in the rat
Authors:J. Koenig   M.A. Mayfield   R.J. Coppings   S.M. McCann  L. Krulich
Affiliation:1. Laboratory of Comparative Physiology of the Central Nervous System, Sechenov Institute of Evolutionary Physiology and Biochemistry, and Academy of Sciences, 44 Thorez Avenue, Leningrad 194223, U.S.S.R.;2. Laboratoire de Neuromorphologie INSERM U 106, Ho?pital FOCH, Suresnes 92150, and Laboratoire de Psychophysiologie sensorielle, UniversitéParis VI, Paris 75005, France
Abstract:Unanesthetized adult male rats with indwelling right atrial cannulae were used in the majority of experiments. Morphine (MOR, 3.0 mg/kg) caused a large but transient increase in both GH and PRL levels, which could be prevented with naloxone. Disruption of central noradrenergic function with diethyldithiocarbamate (400 mg/kg) or phenoxybenzamine (15 mg/kg) abolished the GH-releasing effect of MOR, without interfering with the PRL secretory response. Depletion of brain serotonin stores with p-chlorophenylalanine (300 mg/kg) or 5,7-dihydroxytryptamine or administration of serotonin receptor blocker, cyproheptadine (2.5 mg/kg), did not diminish the GH respnse to MOR but it inhibited, or in the case of 5,7-DHT treatment abolished the activation of PRL secretion. Additionally, metergoline (0.1 and 1.0 mg/kg), another serotonin receptor blocker, caused an inhibition of the GH-releasing action of MOR; however, this inhibition was reversed by pretreatment with spiroperidol (0.1 mg/kg). Metergoline also markedly diminished the MOR-induced elevation of PRL. Inhibition of catecholamine synthesis with alpha-methyl-p-tyrosine (alpha-MT, 250 mg/kg) blunted the effect of MOR on GH; however, dopamine receptor blockers, spiroperidol (0.01 and 0.1 mg/kg) or (+)butaclamol (0.3 and 1.3 mg/kg), were without any influence. alpha-MT or spiroperidol did not alter the effect of MOR on PRL secretion, but the higher dose of (+)butaclamol suppressed it. It is concluded that the GH-releasing action of MOR requires unimpaired functioning of the central noradrenergic system, while the serotonergic and dopaminergic systems appear to play no significant role in it. In contrast, serotonergic systems seem to be essential for the activation of PRL secretion, whereas the noradrenergic system is not involved. It remains uncertain whether morphine activtes PRL secretion also through inhibition of dopaminergic activity. We favor the view that the dopaminergic component participates in the PRL activation by MOR, but that its contribution to the overall effect is rather small.
Keywords:morphine   growth hormone   prolactin   serotonin   norepinephrine   dopamine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号