首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effect of low glycogen on glycogen synthase in human muscle during and after exercise
Authors:Z YAN  M K SPENCER  A KATZ
Abstract:Subjects cycled at a work load calculated to elicit 75% of maximal oxygen uptake on two occasions: the first to fatigue (34.5 ± 5.3 min; mean ± SE), and the second at the same workload and for the same duration as the first. Biopsies were obtained from the quadriceps femoris muscle before and immediately after exercise, and 5 min post-exercise. Before the first experiment, muscle glycogen was lowered by a combination of exercise and diet, and before the second, experiment muscle glycogen was elevated. In the low glycogen condition (LG), muscle glycogen decreased from 169 ± 15 mmol glucosyl units kg-1dry wt at to rest to 13 ± 6 after exercise. In the high glycogen condition (HG) glycogen decreased from 706 ± 52 at rest to 405 ± 68 after exercise. Glycogen synthase fractional activity (GSF) was always higher during the LG treatment. During exercise in the HG condition, those subjects who cycled for < 35 min (n= 3) had GSF values in muscle which were lower than at rest, whereas those subjects who cycled for > 35 min (n= 4) had values which were similar to or higher than at rest. Thus the change in GSF in muscle during HG was positively related to the exercise duration (r= 0.94; y = 254–17x + 0.3x2; P < 0.001) and negatively related to the glycogen content at the end of exercise (r=–0.82; y= 516–2x + 0.001x2; P < 0.05). During LG exercise GSF remained constant. GSF increased markedly after 5 min post-exercise in both HG and LG conditions. cAMP dependent protein kinase activity increased similarly during both LG and HG exercise and reverted to the preexercise values 5 min post-exercise. It is concluded that muscle contraction decreases GSF, but low glycogen levels can attenuate or abolish the decrease in GSF. The rapid increase of GSF during recovery from exercise does not require glycogen depletion during the exercise.
Keywords:cyclic AMP dependent protein kinase  glycogen synthase phosphatase  fatigue  recovery from exercise
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号