首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dose Dependency of Pharmacokinetics and Therapeutic Efficacy of Pegylated Liposomal Doxorubicin (DOXIL) in Murine Models
Authors:Alberto Gabizon  Dinah Tzemach  Lidia Mak  Moshe Bronstein  Aviva T Horowitz
Institution:1. Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel;2. Oncology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
Abstract:Stealth (pegylated) liposomal doxorubicin (Doxil) has been extensively studied at the pre-clinical and clinical level in recent years. However, one issue not yet addressed is the effect of dose on tumor localization and therapeutic efficacy of Doxil. Although it has been reported that the pharmacokinetics of drug-free Stealth liposomes is independent of dose within a certain range, clinical pharmacokinetic analysis of Doxil suggests a dose-dependent clearance saturation phenomenon when a broad dose range is examined. In addition, liposome-encapsulated doxorubicin can exert toxic effects on the liver macrophage population in the form of impairment of the phagocytic function and reduced ability of colloid particle clearance. In studies with tumor-bearing mice in which the dose of Doxil was escalated from 2.5 to 20 mg/kg, we demonstrate that dose escalation results in a saturation of Doxil clearance and a disproportional increase of the amount of liposomal drug accumulating in tumor. Experiments with radiolabeled highly negatively-charged liposomes injected into mice previously treated with Doxil are consistent with a partial blockade of the reticulo-endothelial system with relative reduction of liver uptake and greater prolongation of liposome circulation time. The clearance saturation effect is seen after Doxil in a dose-dependent fashion, and not after a similar free doxorubicin dose or similar phospholipid dose in drug-free liposomes. A trend to superior therapeutic efficacy for treatments based on larger doses as compared to smaller split doses, while maintaining an equivalent dose intensity, was also observed. These observations may be relevant to the choice of dose-schedule of Doxil to ensure optimal anti-tumor activity. Therefore, dose-dependent liposomal doxorubicin blockade of the reticulo-endothelial system may prolong liposome circulation time and enhance significantly drug delivery to tumors.
Keywords:Pharmacokinetics  Liposomes  Doxorubicin  Stealth  Murine  Tumors  Reticulo-endothelial System  Chemotherapy  Anthracyclines
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号