首页 | 本学科首页   官方微博 | 高级检索  
     


The importance of nonelectrostatic materials in holding chambers for delivery of hydrofluoroalkane albuterol
Authors:Rau Joseph L  Coppolo Dominic P  Nagel Mark W  Avvakoumova Valentina I  Doyle Cathy C  Wiersema Kimberly J  Mitchell Jolyon P
Affiliation:Cardiopulmonary Care Sciences, Georgia State University, Atlanta, Georgia 30084, USA. joerau@comcast.net
Abstract:INTRODUCTION: Electrostatic attraction of aerosolized particles to the inner walls of an aerosol holding chamber (HC) made from a nonconducting material can reduce medication delivery, particularly if there is a delay between actuation and inhalation. OBJECTIVE: Compare total emitted mass and fine-particle mass (mass of particles < 4.7 microm) of hydrofluoroalkane-propelled albuterol from similar-sized HCs manufactured from conductive material (Vortex), charge-dissipative material (AeroChamber Max), and nonconductive material (OptiChamber Advantage, ProChamber, Breathrite, PocketChamber, and ACE), with and without wash/rinse pretreatment of the HC interior with ionic detergent, and with 2-s and 5-s delays between actuation and inhalation. METHODS: All the HCs were evaluated (1) directly from their packaging (with no wash/rinse pretreatment) and (2) after washing with ionic detergent and rinsing and drip-drying. We used an apparatus that interfaced between the HC mouthpiece and the induction port of an 8-stage Andersen cascade impactor to simulate a poorly coordinated patient, with delays of 2 s and 5 s between actuation and inhalation/sampling, at 28.3 L/min. RESULTS: With the 2-s delay, the delivered fine-particle mass per actuation, before and after (respectively) wash/rinse pretreatment was: AeroChamber Max: 23.8 +/- 4.8 microg, 21.5 +/- 3.2 microg; Vortex: 16.2 +/- 1.7 microg, 15.5 +/- 2.0 microg; OptiChamber Advantage: 2.6 +/- 1.2 microg, 6.7 +/- 2.3 microg; ProChamber: 1.6 +/- 0.4 microg, 5.1 +/- 2.5 microg; Breathrite: 2.0 +/- 0.9 microg, 3.2 +/- 1.8 microg; PocketChamber: 3.4 +/- 1.6 microg, 1.7 +/- 1.6 microg; ACE: 4.5 +/- 0.9 microg, 5.4 +/- 2.9 microg. Similar trends, but greater reduction in aerosol delivery, were observed with the 5-s delay. Significantly greater fine-particle mass was delivered from HCs made from conducting or charge-dissipative materials than from those made from nonconductive polymers, even after wash/rinse pretreatment (p < 0.01). The fine-particle mass was also significantly greater from the AeroChamber Max than from the Vortex, irrespective of wash/rinse pretreatment or delay interval (p < 0.01). CONCLUSION: HCs made from electrically conductive materials emit significantly greater fine-particle mass, with either a 2-s or 5-s delay, than do HCs made from nonconducting materials, even with wash/rinse pretreatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号