首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical and dimensional adaptation of rabbit carotid artery culturedin vitro
Authors:Dr T. Matsumoto  E. Okumura  Y. Miura  M. Sato
Affiliation:Biomechanics Laboratory, Graduate School of Mechanical Engineering, Tohoku University, Sendai, Japan. takeo@biomech.mech.tohoku.ac.jp
Abstract:The effects of the mechanical environment on arterial walls were investigated in rabbit common carotid arteries, cultured for six days under three different intraluminal pressures (0, 80 and 160 mmHg) in a perfusion culture system. The mechanical responses following the culture were examined using a quasi-static pressure-diameter test. Specimen viability was determined by smooth muscle contraction induced with KCl. Eighteen out of 21 cultured segments showed a peak reduction in diameter of more than 10% and were used for the analysis. The arterial segments cultured at 0 mmHg had a significantly smaller diameter than those cultured at other pressures. The segments cultured at higher pressure had lower incremental elastic moduli at 20 and 80 mmHg and higher moduli at 160 mmHg. The walls of the cultured segments were thicker in groups with higher pressure. These results indicate that, even in culture, the mechanical environment is a major determinant for the mechanical property and dimensions of the arterial wall. Arterial walls may respond to their mechanical environment even if other factors, such as hormonal environment and nervous stimuli, are kept unchanged.
Keywords:Mechanical adaptation  Smooth muscle cells  Arterial wall mechanics  Tissue culture
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号