首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments
Authors:Frank M. Phillips  Michael N. Tzermiadianos  Leonard I. Voronov  Robert M. Havey  Gerard Carandang  Susan M. Renner  David M. Rosler  Jorge A. Ochoa  Avinash G. Patwardhan
Affiliation:1. Department of Orthopedics and Tumor Orthopedics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;2. Department of Trauma Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria;3. Department of Orthopedics and Trauma Surgery, St. Josef-Hospital, University Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany
Abstract:Background contextLumbar fusion is traditionally used to restore stability after wide surgical decompression for spinal stenosis. The Total Facet Arthroplasty System (TFAS) is a motion-restoring implant suggested as an alternative to rigid fixation after complete facetectomy.PurposeTo investigate the effect of TFAS on the kinematics of the implanted and adjacent lumbar segments.Study designBiomechanical in vitro study.MethodsNine human lumbar spines (L1 to sacrum) were tested in flexion-extension (+8 to ?6 Nm), lateral bending (±6 Nm), and axial rotation (±5 Nm). Flexion-extension was tested under 400 N follower preload. Specimens were tested intact, after complete L3 laminectomy with L3–L4 facetectomy, after L3–L4 pedicle screw fixation, and after L3–L4 TFAS implantation. Range of motion (ROM) was assessed in all tested directions. Neutral zone and stiffness in flexion and extension were calculated to assess quality of motion.ResultsComplete laminectomy-facetectomy increased L3–L4 ROM compared with intact in flexion-extension (8.7±2.0 degrees to 12.2±3.2 degrees, p<.05) lateral bending (9.0±2.5 degrees to 12.6±3.2 degrees, p=.09), and axial rotation (3.8±2.7 degrees to 7.8±4.5 degrees p<.05). Pedicle screw fixation decreased ROM compared with intact, resulting in 1.7±0.5 degrees flexion-extension (p<.05), 3.3±1.4 degrees lateral bending (p<.05), and 1.8±0.6 degrees axial rotation (p=.09). TFAS restored intact ROM (p>.05) resulting in 7.9±2.1 degrees flexion-extension, 10.1±3.0 degrees lateral bending, and 4.7±1.6 degrees axial rotation. Fusion significantly increased the normalized ROM at all remaining lumbar segments, whereas TFAS implantation resulted in near-normal distribution of normalized ROM at the implanted and remaining lumbar segments. Flexion and extension stiffness in the high-flexibility zone decreased after facetectomy (p<.05) and increased after simulated fusion (p<.05). TFAS restored quality of motion parameters (load-displacement curves) to intact (p>.05). The quality of motion parameters for the whole lumbar spine mimicked L3–L4 segmental results.ConclusionsTFAS restored range and quality of motion at the operated segment to intact values and restored near-normal motion at the adjacent segments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号