首页 | 本学科首页   官方微博 | 高级检索  
检索        


Food or Water Deprivation Modulate Nitric Oxide Synthase (NOS) Activity and Gene Expression in Rat Hypothalamic Neurones: Correlation with Neurosecretory Activity?
Authors:R D O'Shea  & A L Gundlach
Institution:University of Melbourne Clinical Pharmacology and Therapeutics Unit, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria 3084, Australia.
Abstract:Nitric oxide (NO) is produced by the enzyme NO synthase (NOS) and may be involved in the regulation of nutrient and endocrine homeostasis via actions on neurones of the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. The effects of water deprivation or food deprivation for 4 days on the abundance of messenger RNA encoding NOS in these nuclei in rats were examined using in situ hybridization. Water deprivation markedly increased the abundance of NOS mRNA in both the SON and PVN (225±11% of control, P<0.05 and 261±34% of control, P<0.01 respectively). NOS mRNA abundance also appeared to be increased in magnocellular accessory nuclei. Food deprivation decreased NOS mRNA abundance in the SON and PVN (42±6% and 52±7% of control respectively, both P<0.05), while withdrawal of both food and water produced no significant net changes in the abundance of NOS mRNA. Treatment-induced alterations in NOS mRNA abundance were reflected by changes in NOS activity, as assessed by NADPH-diaphorase histochemistry, and NADPH-diaphorase staining was observed in neurones both positive and negative for oxytocin-like immunoreactivity. These findings suggest that NOS mRNA abundance, NOS enzymatic activity and presumably NO production are modulated in an activity-dependent manner in hypothalamic (magnocellular and parvocellular) neurones by alterations in fluid and nutrient homeostasis, and support data from other studies suggesting a role for NO in the central regulation of water and food intake in the rat.
Keywords:paraventricular hypothalamic nucleus  supraoptic nucleus  messenger RNA              in situ hybridization  NADPH-diaphorase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号