首页 | 本学科首页   官方微博 | 高级检索  
     


A novel ring-substituted diindolylmethane,1,1-bis[3'-(5-methoxyindolyl)]-1-(p-t-butylphenyl) methane, inhibits extracellular signal-regulated kinase activation and induces apoptosis in acute myelogenous leukemia
Authors:Contractor Rooha  Samudio Ismael J  Estrov Zeev  Harris David  McCubrey James A  Safe Stephen H  Andreeff Michael  Konopleva Marina
Affiliation:Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.
Abstract:We investigated the antileukemic activity and molecular mechanisms of action of a newly synthesized ring-substituted diindolylmethane derivative, 1,1-bis[3'-(5-methoxyindolyl)]-1-(p-t-butylphenyl) methane (DIM #34), in acute myelogenous leukemia (AML) cells. DIM #34 inhibited AML cell growth via the induction of apoptosis and abrogated clonogenic growth of primary AML samples. Exposure to DIM #34 induced loss of mitochondrial inner transmembrane potential, release of cytochrome c into the cytosol, and caspase activation. Bcl-2-overexpressing, Bax knockout, and caspase-9-deficient cells were partially resistant to cell death, suggesting the involvement of the intrinsic apoptotic pathway. Furthermore, DIM #34 transiently inhibited the phosphorylation and activity of the extracellular signal-regulated kinase and abrogated Bcl-2 phosphorylation. Because other methylene-substituted diindolylmethane analogues have been shown to transactivate the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma), we studied the role of PPARgamma in apoptosis induction. Cotreatment of cells with a selective PPARgamma antagonist or with retinoid X receptor and retinoic acid receptor ligands partially modulated apoptosis when combined with DIM #34, suggesting PPARgamma receptor-dependent and receptor-independent cell death. Together, these findings suggest that diindolylmethanes are a new class of compounds that selectively induce apoptosis in AML cells through the modulation of the extracellular signal-regulated kinase and PPARgamma signaling pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号