首页 | 本学科首页   官方微博 | 高级检索  
     


Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon
Authors:Martin Mä  rz,Prisca Chapouton,Nicolas Diotel,Colette Vaillant,Birgit Hesl,Masanari Takamiya,Chen Sok Lam,Olivier Kah,Laure Bally‐Cuif,Uwe Strä  hle
Abstract:The zebrafish has become a new model for adult neurogenesis, owing to its abundant neurogenic areas in most brain subdivisions. Radial glia‐like cells, actively proliferating cells, and label‐retaining progenitors have been described in these areas. In the telencephalon, this complexity is enhanced by an organization of the ventricular zone (VZ) in fast and slow‐dividing domains, suggesting the existence of heterogeneous progenitor types. In this work, we studied the expression of various transgenic or immunocytochemical markers for glial cells (gfap:gfp, cyp19a1b:gfp, BLBP, and S100β), progenitors (nestin:gfp and Sox2), and neuroblasts (PSA‐NCAM) in cycling progenitors of the adult zebrafish telencephalon (identified by expression of proliferating cell nuclear antigen (PCNA), MCM5, or bromodeoxyuridine incorporation). We demonstrate the existence of distinct populations of dividing cells at the adult telencephalic VZ. Progenitors of the overall slow‐cycling domains express high levels of Sox2 and nestin:gfp as well as all glial markers tested. In contrast, domains with an overall fast division rate are characterized by low or missing expression of glial markers. PCNA‐positive cells in fast domains further display a morphology distinct from radial glia and co‐express PSA‐NCAM, suggesting that they are early neuronal precursors. In addition, the VZ contains cycling progenitors that express neither glial markers nor nestin:gfp, but are positive for Sox2 and PSA‐NCAM, identifying them as committed neuroblasts. On the basis of the marker gene expression and distinct cell morphologies, we propose a classification for the dividing cell states at the zebrafish adult telencephalic VZ. © 2010 Wiley‐Liss, Inc.
Keywords:radial glia  neural stem cells  adult neurogenesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号