首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of Ca2+-release-activated Ca2+ channel (CRAC) and K+ channels by curcumin in Jurkat-T cells
Authors:Shin Dong Hoon  Seo Eun Yeong  Pang Bo  Nam Joo Hyun  Kim Hyang Sun  Kim Woo Kyung  Kim Sung Joon
Affiliation:Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea.
Abstract:The increase in cytoplasmic Ca(2+) concentration (Δ[Ca(2+)](c)) mediated by the Ca(2+)-release-activated Ca(2+) channel (CRAC) is a critical signal for the activation of lymphocytes. Also, the voltage-gated K(+) channel (K(v)) and intermediate-conductance Ca(2+)-activated K(+) channel (IKCa1/SK4) have drawn attention as pharmacological targets for regulating immune responses. Since polyphenolic agents have various immunomodulatory effects, here we compared the effects of curcumin, rosmarinic acid, resveratrol, and epigallocatechin gallate on the ionic currents through CRAC (I(CRAC)), K(v) (I(Kv)), SK4 (I(SK4)) and on the Δ[Ca(2+)](c) of Jurkat-T cells using the patch clamp technique and fura-2 spectrofluorimetry. Curcumin (10 μM) inhibited store-operated Ca(2+) entry (SOCE). Consistently, dose-dependent inhibition of I(CRAC) by curcumin was confirmed in Jurkat-T (IC(50), 5.9 μM) and the HEK293 cells overexpressing Orai1 and STIM1 (IC(50), 0.6 μM). Also, curcumin inhibited both I(Kv) (IC(50), 11.9 μM) and I(SK4) (IC(50), 4.2 μM). The other polyphenols (rosmarinic acid, resveratrol, and epigallocatechin gallate at 10 - 30 μM) had no effect on SOCE and showed only a partial inhibition of the K(+) currents. In summary, among the tested polyphenolic agents, curcumin showed prominent inhibition of major ion channels in lymphocytes, which might contribute to the anti-inflammatory effects of curcumin. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10209FP].
Keywords:curcumin  T cell  polyphenol
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号