首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   7篇
儿科学   1篇
基础医学   11篇
口腔科学   2篇
内科学   5篇
皮肤病学   1篇
神经病学   2篇
特种医学   1篇
外科学   4篇
药学   2篇
肿瘤学   18篇
  2022年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2004年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Outcomes in pancreatic ductal adenocarcinoma (PDAC) are known to be worse in tumors with high integrin β1 expression, but targeted monotherapy against this integrin has not been effective. Seven other beta integrins are expressed in mammalian biology and they are known to have overlapping and compensatory signaling in biological systems. However, their roles in PDAC are poorly understood and have not been systematically compared to integrin β1 biology. In this study, we analyzed the clinical outcomes against beta integrin 1-8 (ITGB1-8) expression in PDAC samples from two large independent cohorts, The Cancer Genome Atlas (TCGA) and GSE21501. Biological function and tumor microenvironment composition were studied using Gene Set Enrichment Analysis and xCell. Expression of all eight beta integrins is significantly increased in PDACs relative to normal pancreatic tissues (all P<0.001). ITGB1, 2, 5, and 6 have similarly enriched gene patterns related to transforming growth factor (TGF)-β, epithelial mesenchymal transition, inflammation, stemness, and angiogenesis pathways. Homologous recombination defects and neoantigens are increased in high-ITGB4, 5, and 6 tumors, with decreased overall survival in high-ITGB1, 5, and 6 tumors compared to low expression tumors (hazard ratios 1.5-2.0). High-ITGB1, 2, and 5 tumors have increased fibroblast infiltration (all P<0.01) while endothelial cells are increased in high-ITGB2 and 3 tumors (all P<0.05). Overall, beta integrin expression does not correlate to immune cell populations in PDACs. Therefore, while all beta integrins are overexpressed in PDACs, they exert differential effects on PDAC biology. ITGB2, 5, and 6 have a similar profile to ITGB1, suggesting that future research in PDAC integrin therapy needs to consider the complementary signaling profiles mediated by these integrins.  相似文献   
2.
Introduction: Pancreatic adenocarcinoma (PDAC) has the worst prognosis of any major malignancy, with 5-year survival painfully inadequate at under 5%. Investigators have struggled to target and exploit PDAC unique biology, failing to bring meaningful results from bench to bedside. Nonetheless, in recent years, several promising targets have emerged.

Areas covered: This review will discuss novel drug approaches in development for use in PDAC. The authors examine the continued efforts to target Kirsten rat sarcoma viral oncogene homolog (KRas), which have recently been successfully abated using novel small interfering RNA (siRNA) eluting devices. The authors also discuss other targets relevant to PDAC including those downstream of mutated KRas, such as MAPK kinase and phosphatidylinositol 3-kinase.

Expert opinion: Although studies into novel biomarkers and advanced imaging have highlighted the potential new avenues toward discovering localized tumors earlier, the current therapeutic options highlight the fact that PDAC is a highly metastatic and chemoresistant cancer that often must be fought with virulent, systemic therapies. Several newer approaches, including siRNA targeting of mutated KRas and enzymatic depletion of hyaluronan with PEGylated hyaluronidase are particularly exciting given their early stage results. Further research should help in elucidating their potential impact as therapeutic options.  相似文献   
3.
Multipotent adipose-derived stem cells (ASCs) are increasingly used for regenerative purposes such as soft tissue reconstruction following mastectomy; however, the ability of tumors to commandeer ASC functions to advance tumor progression is not well understood. Through the integration of physical sciences and oncology approaches we investigated the capability of tumor-derived chemical and mechanical cues to enhance ASC-mediated contributions to tumor stroma formation. Our results indicate that soluble factors from breast cancer cells inhibit adipogenic differentiation while increasing proliferation, proangiogenic factor secretion, and myofibroblastic differentiation of ASCs. This altered ASC phenotype led to varied extracellular matrix (ECM) deposition and contraction thereby enhancing tissue stiffness, a characteristic feature of breast tumors. Increased stiffness, in turn, facilitated changes in ASC behavior similar to those observed with tumor-derived chemical cues. Orthotopic mouse studies further confirmed the pathological relevance of ASCs in tumor progression and stiffness in vivo. In summary, altered ASC behavior can promote tumorigenesis and, thus, their implementation for regenerative therapy should be carefully considered in patients previously treated for cancer.  相似文献   
4.
Immunotherapy has revolutionized cancer treatment for several hematologic and solid organ malignancies; however, pancreatic cancer remains unresponsive to conventional immunotherapies. Several characteristics of pancreatic cancer present challenges to successful treatment with immunotherapy, including its aggressive biology, poor immunogenicity, and abundant desmoplastic stroma which can impede effector T cell infiltration and promote an immunosuppressive microenvironment. In this review, we evaluate the current understanding of the immune and stromal landscapes of pancreatic cancer, discuss the successes and failures of stroma-targeted therapies, and highlight how stroma-directed therapies may be synergistic with immunotherapy.  相似文献   
5.
One of the key factors that correlates with poor survival of patients with pancreatic cancer is the extent of hypoxic areas within the tumor tissue. The adaptation of pancreatic cancer cells to limited oxygen delivery promotes the induction of an invasive and treatment-resistant phenotype, triggering metastases at an early stage of tumor development, which resist in most cases adjuvant therapies following tumor resection. In this article, the authors summarize the evidence demonstrating the significance of hypoxia in pancreatic cancer pathogenesis and discuss the possible hypoxia-induced mechanisms underlying its aggressive nature. We then conclude with promising strategies that target hypoxia-adapted pancreatic cancer cells.  相似文献   
6.
Collagen induced MMP-2 activation in human breast cancer   总被引:6,自引:0,他引:6  
Summary Matrix metalloproteinase-2 (MMP-2), a zymogen requiring proteolytic activation for catalytic activity, has been implicated broadly in the invasion and metastasis of many cancer model systems, including human breast cancer (HBC). MMP-2 has been immunolocalized to carcinomatous human breast, where the degree of activation of MMP-2 correlates well with tumor grade and patient prognosis. Using Matrigel assays, we have stratified HBC cell lines for invasivenessin vitro, and compared this to their potential for metastatic spread in nude mice. HBC cell lines expressing the mesenchymal marker protein vimentin were found to be highly invasivein vitro, and tended to form metastases in nude mice. We have further discovered that culture on collagen-I gels (VitrogenTM; Vg) induces MMP-2-activator in highly invasive but not poorly invasive HBC cell lines. As seen for other MMP-2-activator inducing regimens, this induction requires protein synthesis and an intact MMP-2 hemopexin-like domain, appears to be mediated by a cell surface activity, and can be inhibited by metalloproteinase inhibitors. The induction is highly specific to collagen I, and is not seen with thin coatings of collagen I, collagen IV, laminin, or fibronectin, or with 3-dimensional gels of laminin, Matrigel, or gelatin. This review focuses on collagen I and MMP-2, their localization and source in HBC, and their relationship(s) to MMP-2 activation and HBC metastasis. The relevance of collagen I in activation of MMP-2in vivo is discussed in terms of stromal cell: tumor cell interaction for collagen I deposition, MMP-2 production, and MMP-2-activation. Such cooperativity may existin vivo for MMP-2 participation in HBC dissemination. A more complete understanding of the regulation of MMP-2-activator by type I collagen may provide new avenues for improved diagnosis and prognosis of human breast cancer.  相似文献   
7.
Viscoelastic Imaging of Breast Tumor Microenvironment With Ultrasound   总被引:2,自引:0,他引:2  
Imaging systems are most effective for detection and classification when they exploit contrast mechanisms specific to particular disease processes. A common example is mammography, where the contrast depends on local changes in cell density and the presence of microcalcifications. Unfortunately the specificity for classifying malignant breast disease is relatively low for many current diagnostic techniques. This paper describes a new ultrasonic technique for imaging the viscoelastic properties of breast tissue. The mechanical properties of glandular breast tissue, like most biopolymers, react to mechanical stimuli in a manner specific to the microenvironment of the tissue. Elastic properties allow noninvasive imaging of desmoplasia while viscous properties describe metabolism-dependent features such as pH. These ultrasonic methods are providing new tools for studying disease mechanisms as well as improving diagnosis.  相似文献   
8.
We report a case of clear‐cell ependymoma in a 20‐month‐old girl who presented with seizures. The tumor had several uncommon features including a solid consistency, a purely intracortical location, and a remarkable degree of desmoplasia. Clinical, radiological, and pathological findings are presented. This case emphasizes the value of ultrastructural studies in pathological work‐up of brain tumors.  相似文献   
9.
Although recent studies revealed that adipose tissue accelerates pancreatic tumor progression with excessive extracellular matrix, key players for desmoplasia in the adipose microenvironment remains unknown. Here, we investigated the roles of adipose tissue-derived stromal cells (ASCs) in desmoplastic lesions and tumor progression by in vitro and in vivo experiments. In a three-dimensional (3-D) organotypic fat invasion model using visceral fat from CAG-EGFP mice, GFP-positive fibroblastic cells infiltrated toward cancer cells. When tumor cells were inoculated into transplanted visceral fat pads in vivo, tumor weights and stromal components were enhanced compared to subcutaneous and orthotopic tumor cells inoculated without fat pads. Expression of αSMA in established human ASCs was lower compared to cancer associated fibroblasts, and the 3-D collagen matrices produced by ASCs cultured in cancer cell-conditioned medium changed from loose to dense structures that affected the motility of cancer cells. Microarray analyses revealed upregulation of S100A4 in ASCs, while S100A4-positive stromal cells were observed at extrapancreatic invasion sites of human pancreatic cancer. The present findings indicate that ASCs are recruited to extrapancreatic invasion sites and produce dense collagen matrices that lead to enhanced tumor progression. Both inhibition of ASCs recruitment and activation could lead to a novel antistromal therapy.  相似文献   
10.
Neuroendocrine tumors are a heterogeneous group of slow‐growing neoplasms arising mainly from the enterochromaffin cells of the digestive and respiratory tract. Although they are relatively rare, their incidence is rising. It has long been observed that they often are associated with the development of fibrosis, both local and distant. Fibrotic complications, such as carcinoid heart disease and mesenteric desmoplasia, may lead to considerable morbidity or even affect prognosis. The elucidation of the pathophysiology of fibrosis would be of critical importance for the development of targeted therapeutic strategies. In this article, the authors review the available evidence regarding the biological basis of fibrosis in neuroendocrine tumors. They explore the role of the tumor microenvironment and the interplay between tumor cells and fibroblasts as a key factor in fibrogenesis and tumor development/progression. They also review the role of serotonin, growth factors, and other peptides in the development of carcinoid‐related fibrotic reactions. Cancer 2017;123:4770‐90 . © 2017 American Cancer Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号