首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   30篇
  国内免费   7篇
耳鼻咽喉   2篇
儿科学   2篇
妇产科学   7篇
基础医学   45篇
口腔科学   28篇
临床医学   34篇
内科学   21篇
皮肤病学   3篇
神经病学   7篇
特种医学   10篇
外科学   31篇
综合类   24篇
预防医学   14篇
眼科学   6篇
药学   71篇
中国医学   6篇
肿瘤学   35篇
  2023年   7篇
  2022年   26篇
  2021年   18篇
  2020年   9篇
  2019年   11篇
  2018年   18篇
  2017年   12篇
  2016年   12篇
  2015年   17篇
  2014年   32篇
  2013年   33篇
  2012年   27篇
  2011年   25篇
  2010年   17篇
  2009年   21篇
  2008年   15篇
  2007年   22篇
  2006年   12篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
1.
Objective and design: Myeloperoxidase (MPO) and proinflammatory cytokines play an important role in the development of inflammation. These markers are generally measured using tedious ELISA procedures. In this study, a novel technique utilizing antibody conjugated quantum dot nanoparticles was developed to detect Myeloperoxidase, Interleukin-1α (IL-1α) and Tumor Necrosis Factor-α (TNF-α) in vivo in the dextran sodium sulfate (DSS) model of experimental colitis. Materials and methods: Colitis was induced in animals (n = 8 animals/group) by feeding 4% DSS solution ad libitum for seven to eight days. Quantum Dots (QDs) exhibiting fluorescence at various wavelengths were conjugated to MPO, IL-1α and TNF-α polyclonal antibodies and tested in vivo at various stages of colitis. Tissue sections obtained were imaged with confocal microscope. The image intensity obtained from the tissue specimen was correlated with clinical activity measured as Disease Activity Index (DAI). Results: Myeloperoxidase, IL-1α and TNF-α were visualized with quantum dots on various days of disease. The intensity of quantum dots increased with the increase in inflammation. The increase in intensity showed an excellent correlation with the DAI based on the clinical parameters. Conclusion: The study demonstrated that multiple biomarkers can be detected simultaneously and their quantitative expression correlated well with clinical disease severity. This novel technology should facilitate design of a novel optical platform for imaging various biomarkers of inflammation, early detection of acute and chronic disease markers and inflammation-mediated cancer markers. This detection may also facilitate determination of therapeutic success. Received 14 March 2007; returned for revision 8 May 2007; accepted by M. Parnham 27 June 2007  相似文献   
2.
科技进步与心血管病学的50年展望   总被引:5,自引:2,他引:3  
本文主要阐述未来50年心血管病学领域内的各种进步,包括基因诊断和治疗、心脏外科手术的发展等等.  相似文献   
3.
周宁 《实用预防医学》2014,(8):1023-1024
艾滋病是严重威胁世界人民健康的公共卫生问题,过去30多年已造成2 500多万人死亡。随着人们对该疾病的不断认知,一些新技术的研究和应用可以从根本上推进HIV/AIDS治疗和预防的进程。纳米技术的研究近年来发展迅速,新型纳米抗HIV药品的研发成为近年来国际研究的热点,本文主要概述了近年来纳米技术在AIDS抗病毒治疗和预防领域的研究进展、应用前景及面临的挑战。  相似文献   
4.
5.
Oral tyrosine kinase inhibitors(TKIs) against epidermal growth factor receptor(EGFR) family have been introduced into the clinic to treat human malignancies for decades. Despite superior properties of EGFR-TKIs as small molecule targeted drugs, their applications are still restricted due to their low solubility, capricious oral bioavailability, large requirement of daily dose, high binding tendency to plasma albumin and initial/acquired drug resistance. Nanotechnology is a promising tool to improve efficacy of these drugs. Through non-oral routes. Various nanotechnology-based delivery approaches have been developed for providing efficient delivery of EGFR-TKIs with a better pharmacokinetic profile and tissue-targeting ability. This review aims to indicate the advantage of nanocarriers for EGFR-TKIs delivery.  相似文献   
6.
ObjectiveFormulate experimental adhesives containing titanium dioxide nanotubes (nt-TiO2) or titanium dioxide nanotubes with a triazine-methacrylate monomer (nt-TiO2:TAT) and evaluate the effect of these fillers on the physical, chemical, and biological properties of the adhesives.MethodsFirst, nt-TiO2 were synthesized via a hydrothermal method. The nt-TiO2 were mixed with a triazine-methacrylate monomer (TAT) to formulate nt-TiO2:TAT, which were characterized by transmission electron microscopy (TEM). The nt-TiO2, TAT, and nt-TiO2:TAT were evaluated via Fourier Transform Infrared, Ultraviolet–visible, and micro-Raman spectroscopies. An experimental adhesive resin was formulated with bisphenol A glycerolate dimethacrylates, 2-hydroxyethyl methacrylate, and photoinitiator/co-initiator system. nt-TiO2 or nt-TiO2:TAT were incorporated at 2.5 wt.% and 5 wt.% in the adhesive. The base resin without nt-TiO2 or nt-TiO2:TAT was used as a control group. The adhesives were evaluated for antibacterial activity, cytotoxicity, polymerization kinetics, degree of conversion (DC), Knoop hardness, softening in solvent (ΔKHN%), ultimate tensile strength (UTS), 24 h- and 1 year- microtensile bond strength (μ-TBS).ResultsTEM confirmed the nanotubular morphology of TiO2. FTIR, UV–vis, and micro-Raman analyses showed the characteristic peaks of each material, indicating the impregnation of TAT in the nt-TiO2. Adhesives with nt-TiO2:TAT showed antimicrobial activity against biofilm formation compared to control (p < 0.05), without differences in the viability of planktonic bacteria (p > 0.05). All groups showed high percentages of pulp cell viability. The polymerization kinetics varied among groups, but all presented DC above 50%. The addition of 5 wt.% of nt-TiO2 and both groups containing nt-TiO2:TAT showed higher values ??of Knoop hardness compared to the control (p < 0.05). The groups with nt-TiO2:TAT presented lower ΔKHN% (p < 0.05) and higher UTS (p < 0.05) than the control group. After one year, the group with 5 wt.% of nt-TiO2, as well as both groups containing nt-TiO2:TAT, showed higher μ-TBS than the control (p < 0.05).SignificanceThe mixing of a triazine-methacrylate monomer with the nt-TiO2 generated a filler that improved the physicochemical properties of the adhesive resins and provided antibacterial activity, which could assist in preventing carious lesions around tooth-resin interfaces. The set of physical, chemical, and biological properties of the formulated polymer, together with the greater stability of the bond strength over time, make nt-TiO2:TAT a promising filler for dental adhesive resins.  相似文献   
7.
ObjectiveViruses on environmental surfaces, in saliva and other body fluids represent risk of contamination for general population and healthcare professionals. The development of vaccines and medicines is costly and time consuming. Thus, the development of novel materials and technologies to decrease viral availability, viability, infectivity, and to improve therapeutic outcomes can positively impact the prevention and treatment of viral diseases.MethodsHerein, we discuss (a) interaction mechanisms between viruses and materials, (b) novel strategies to develop materials with antiviral properties and oral antiviral delivery systems, and (c) the potential of artificial intelligence to design and optimize preventive measures and therapeutic regimen.ResultsThe mechanisms of viral adsorption on surfaces are well characterized but no major breakthrough has become clinically available. Materials with fine-tuned physical and chemical properties have the potential to compromise viral availability and stability. Emerging strategies using oral antiviral delivery systems and artificial intelligence can decrease infectivity and improve antiviral therapies.SignificanceEmerging viral infections are concerning due to risk of mortality, as well as psychological and economic impacts. Materials science emerges for the development of novel materials and technologies to diminish viral availability, infectivity, and to enable enhanced preventive and therapeutic strategies, for the safety and well-being of humankind.  相似文献   
8.
IntroductionDental implants are a usual treatment for the loss of teeth. The success of this therapy is due to the predictability, safety and longevity of the bone–implant interface. Dental implant surface characteristics like roughness, chemical constitution, and mechanical factors can contribute to the early osseointegration. The aim of the present article is to perform a review of the literature on surface roughness of dental implant and osseointegration.MethodologyThis work is a narrative review of some aspects of surface roughness of dental implant and osseointegration.ConclusionDespite technological advancement in the biomaterials field, the ideal surface roughness for osseointegration still remains unclear. In this study about surface nanoroughness of dental implant and osseointegration, the clinical relevance is yet unknown. Innovative findings on nanoroughness are valuable in the fields of dental implantology, maxillofacial or orthopedic implant surfaces and also on cardiovascular implants in permanent contact with patient’s blood.  相似文献   
9.

Objective

This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs).

Material and methods

FiltekTM Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escenceTM and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free LightTM 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm-1) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1).

Results

The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey''s test showed that the nanofilled resin (FiltekTM Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (FiltekTM Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free LightTM 2).

Conclusions

The nanofilled resin showed the lowest DC, and the Vit-l-escenceTM microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.  相似文献   
10.
A star-shaped biodegradable polymer, mannitol-core poly(d,l-lactide-co-glycolide)-d-α-tocopheryl polyethylene glycol 1000 succinate (M-PLGA-TPGS), was synthesized in order to provide a novel nanoformulation for breast cancer chemotherapy. This novel copolymer was prepared by a core-first approach via three stages of chemical reaction, and was characterized by nuclear magnetic resonance, gel permeation chromatography and thermogravimetric analysis. The docetaxel-loaded M-PLGA-TPGS nanoparticles (NPs), prepared by a modified nanoprecipitation method, were observed to be near-spherical shape with narrow size distribution. Confocal laser scanning microscopy showed that the uptake level of M-PLGA-TPGS NPs was higher than that of PLGA NPs and PLGA-TPGS NPs in MCF-7 cells. A significantly higher level of cytotoxicity was achieved with docetaxel-loaded M-PLGA-TPGS NPs than with commercial Taxotere®, docetaxel-loaded PLGA-TPGS and PLGA NPs. Examination of the drug loading and encapsulation efficiency proved that star-shaped M-PLGA-TPGS could carry higher levels of drug than linear polymer. The in vivo experiment showed docetaxel-loaded M-PLGA-TPGS NPs to have the highest anti-tumor efficacy. In conclusion, the star-like M-PLGA-TPGS copolymer shows potential as a promising drug-loaded biomaterial that can be applied in developing novel nanoformulations for breast cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号