首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
内科学   1篇
药学   5篇
  2013年   4篇
  2009年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This review briefly summarizes the information on the molecular mechanisms of action, pharmacokinetic profiles and drug interactions of novel (third-generation) antiepileptic drugs, including brivaracetam, carabersat, carisbamate, DP-valproic acid, eslicarbazepine, fluorofelbamate, fosphenytoin, ganaxolone, lacosamide, losigamone, pregabalin, remacemide, retigabine, rufinamide, safinamide, seletracetam, soretolide, stiripentol, talampanel, and valrocemide. These novel antiepileptic drugs undergo intensive clinical investigations to assess their efficacy and usefulness in the treatment of patients with refractory epilepsy.  相似文献   
2.
Epilepsy affects ≤ 1% of the world's population. Antiepileptic drugs (AEDs) are the mainstay of treatment, although more than a third of patients are not rendered seizure free with existing medications. Uncontrolled epilepsy is associated with increased mortality and physical injuries, and a range of psychosocial morbidities, posing a substantial economic burden on individuals and society. Limitations of the present AEDs include suboptimal efficacy and their association with a host of adverse reactions. Continued efforts are being made in drug development to overcome these shortcomings employing a range of strategies, including modification of the structure of existing drugs, targeting novel molecular substrates and non-mechanism-based drug screening of compounds in traditional and newer animal models. This article reviews the need for new treatments and discusses some of the emerging compounds that have entered clinical development. The ultimate goal is to develop novel agents that can prevent the occurrence of seizures and the progression of epilepsy in at risk individuals.  相似文献   
3.
Parkinson’s disease (PD) afflicts millions of people worldwide. There are numerous drugs available for PD; however, levodopa remains the gold standard of pharmacotherapy to which all other therapies are compared. Levodopa is quite effective for many motor symptoms (bradykinesia, tremor, rigidity) of PD; however, non-levodopa-responsive motor symptoms (postural instability) and nonmotor symptoms are frequently the most troublesome in middle and later stages of disease. Although motor symptoms remain an important focus for emerging drugs, current research is largely geared to identify and develop disease-slowing therapies. Another important area of focus has become treatment of the nonmotor symptoms of PD (especially depression and dementia). This review discusses emerging drugs in the management of the motor and nonmotor symptoms of PD and drugs under study as disease-slowing/neuroprotective agents.  相似文献   
4.
Epilepsy is currently the most prevalent neurological disorder worldwide. Pharmacological therapy remains the cornerstone of epilepsy treatment, however, refractory epilepsy is still a significant clinical problem despite the release of the second generation of anticonvulsants. Anticonvulsant treatment failures may result from lack of efficacy and presence of significant side effects. One rationale for incomplete effectiveness of the currently available anticonvulsants is that they were identified using the same classical models and therefore work largely by the same actions. These mechanisms fail to consider variations in the pathophysiological process that results in epilepsy, nor have they been shown to prevent the process of developing epilepsy (epileptogenesis). The next generation of anticonvulsants has taken into account the shortcomings of existing agents and attempted to improve on the currently available treatments using rationale drug design. This group of investigational anticonvulsants may be broadly classified as possessing one or more of the following: 1) increased tolerability through improvement in drug chemical structure or better delivery to the site of action, 2) new mechanisms (or combinations of mechanisms) of action, 3) improved pharmacokinetic properties. This article will discuss the next generation of anticonvulsants (carabersat, CGX-1007, fluorofelbamate, harkoseride, losigamone, pregabalin, retigabine, safinamide, SPD-421, talampanel, valrocemide) and the possible populations in which they would be clinically useful.  相似文献   
5.
Introduction: Epilepsy is a common neurological disorder; however, its therapy is not satisfactory because a large number of patients suffer from refractory seizures and/or has a low quality of life due to antiepileptic drug (AED) side effects. Glutamate is the major excitatory neurotransmitter in the brain, AMPA receptors (AMPARs) represent a validated target for AEDs' development. Evidences support their role during seizures and neurodegeneration. Development of AMPAR ligands has led to two different branches of research, with the identification of competitive and noncompetitive antagonists.

Areas covered: We herein describe the architecture of AMPAR and the main structure–activity relationships of antagonists. Finally, we report the effects of AMPAR antagonists in preclinical models and clinical trials in epileptic patients. We reviewed the most relevant research in the field, focusing on research advances for the oldest AMPA antagonists and the new most promising molecules identified.

Expert opinion: Overall, the development of AMPAR antagonists confirms their great clinical potential; their arrival to clinical practice has been slowed down by their unfavorable pharmacokinetic profile and tolerability; however, their clinical use might be justified by their efficacy and the new drugs developed such as perampanel have been greatly ameliorated from both points of view.  相似文献   
6.
Neuronal cell death during fatal acute viral encephalomyelitis can result from damage caused by virus replication, glutamate excitotoxicity, and the immune response. A neurovirulent strain of the alphavirus Sindbis virus (NSV) causes fatal encephalomyelitis associated with motor neuron death in adult C57BL/6 mice that can be prevented by treatment with the prototypic noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor antagonist GYKI 52466 [Nargi-Aizenman J, et al. (2004) Ann Neurol 55:541-549]. To determine the mechanism of protection, NSV-infected mice were treated with 7-acetyl-5-(4-aminophenyl)-8(R)-methyl-8,9-dihydro-7H-1,3-dioxolo-(4,5-h)-benzodiazepine (talampanel), a potent, orally available member of the 2,3 benzodiazepine class of noncompetitive AMPA glutamate receptor antagonists. Talampanel-treated mice were protected from NSV-induced paralysis and death. Examination of the brain during infection showed significantly less mononuclear cell infiltration and no increase in astrocyte expression of glial fibrillary acidic protein in treated mice compared with untreated mice. Lack of CNS inflammation was attributable to failure of treated mice to induce activation and proliferation of lymphocytes in secondary lymphoid tissue in response to infection. Antibody responses to NSV were also suppressed by talampanel treatment, and virus clearance was delayed. These studies reveal a previously unrecognized effect of AMPA receptor antagonists on the immune response and suggest that prevention of immune-mediated damage, in addition to inhibition of excitotoxicity, is a mechanism by which these drugs protect from death of motor neurons caused by viral infection.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号