首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   8篇
  国内免费   3篇
基础医学   38篇
临床医学   3篇
内科学   6篇
皮肤病学   1篇
神经病学   84篇
综合类   7篇
预防医学   2篇
药学   18篇
中国医学   3篇
肿瘤学   2篇
  2024年   1篇
  2022年   6篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   12篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   6篇
  2008年   15篇
  2007年   12篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   11篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
排序方式: 共有164条查询结果,搜索用时 109 毫秒
1.
Over 100 mutations in the presenilin‐1 gene (PSEN1) have been shown to result in familial early onset Alzheimer disease (EOAD), but only a relatively few give rise to plaques with an appearance like cotton wool (CWP) and/or spastic paraparesis (SP). A family with EOAD, seizures and CWP was investigated by neuropathological study and DNA sequencing of the PSEN1 gene. Aβ was identified in leptomeningeal vessels and in cerebral plaques. A single point mutation, p.L420R (g.1508T > G) that gives rise to a missense mutation in the eighth transmembrane (TM8) domain of PS1 was identified in two affected members of the family. p.L420R (g.1508T > G) is the mutation responsible for EOAD, seizures and CWP without SP in this family.  相似文献   
2.
The neurochemistry of Alzheimer's disease   总被引:1,自引:0,他引:1  
Our knowledge of the neurochemical pathology of AD has increased immensely the last years. Although it is now clear that mutations in the APP gene can cause some rare hereditary forms of AD, and that ApoE4 is a prominent risk factor for AD, we at present know little about the underlying cause of AD in the general population and the biochemical mechanisms by which the apolipoprotein E4 isoform affects AD pathogenesis. It is hoped that the near future will see a resolution of the current controversies in AD research, including: 1) whether APP mutations cause Alzheimer's disease by affecting Aβ deposition or the function of APP itself; 2) whether abnormal phosphorylation of tau is a central pathogenetic event, or whether it occurs as epiphenomena that reflect general neurodegeneration in a variety of disease processes; 3) Whether Aβ deposition in the brain is the central event in AD or whether it occurs as epiphenomena in a variety of brain disorders such as head trauma; and 4) whether altered tau phosphorylation occurs secondary to Aβ deposition or vice versa, and what the link is (if any) between the two processes.  相似文献   
3.
Neuronal autophagy is essential for neuronal survival and the maintenance of neuronal homeostasis. Increasing evidence has implicated autophagic dysfunction in the pathogenesis of Alzheimer’s disease (AD). The mechanisms underlying autophagic failure in AD involve several steps, from autophagosome formation to degradation. The effect of modulating autophagy is context-dependent. Stimulation of autophagy is not always beneficial. During the implementation of therapies that modulate autophagy, the nature of the autophagic defect, the timing of intervention, and the optimal level and duration of modulation should be fully considered.  相似文献   
4.
5.
BACKGROUND: Early-onset familial Alzheimer's disease (EOFAD) is linked to mutations in three autosomal dominant genes: PS1, PS2 and APP. The clinical presentation and age of onset of mutations is variable. OBJECTIVES: The aim of this report is to describe a novel PS1 mutation believed to be causal for a very early onset of AD. METHODS: This is a case history using information from medical records, relative interviews and genetic testing results to describe the pre-clinical prodrome and clinical course of a patient with EOFAD. RESULTS: A previously undescribed G206V mutation in PS1 was found in the proband. CONCLUSION: The G206V mutation in PS1 is probably causal of a case of EOFAD with significant premorbid features.  相似文献   
6.
One pathological characteristic of Alzheimer's disease (AD) is extensive synapse loss. Presenilin 1 (PS1) is linked to the pathogenesis of early onset familial Alzheimer's disease (FAD) and is localized at the synapse, where it binds N-cadherin and modulates its adhesive activity. To elucidate the role of the PS1/N-cadherin interaction in synaptic contact, we established SH-SY5Y cells stably expressing wild-type (wt) PS1 and dominant-negative (D385A) PS1. We show that the formation of cadherin-based cell-cell contact among SH-SY5Y cells stably expressing D385A PS1 was suppressed. Conversely, wt PS1 cells exhibited enhanced cell-cell contact and colony formation. Suppression of cell-cell contact in D385A cells was accompanied by an alteration in N-cadherin subcellular localization; N-cadherin was retained mainly in the endoplasmic reticulum (ER) and cell surface expression was reduced. We conclude that PS1 is essential for efficient trafficking of N-cadherin from the ER to the plasma membrane. PS1-mediated delivery of N-cadherin to the plasma membrane is important for N-cadherin to exert its physiological function, and it may control the state of cell-cell contact.  相似文献   
7.
Biology of presenilins as causative molecules for Alzheimer disease   总被引:3,自引:0,他引:3  
Many missense mutations in the presenilins are associated with autosomal dominant forms of familial Alzheimer disease (AD). Presenilin genes encode polytopic transmembrane proteins, which are processed by proteolytic cleavage and form high-molecular-weight complexes under physiological conditions. The presenilins have been suggested to be functionally involved in developmental morphogenesis, apoptosis signal pathways, and processing of selected proteins including beta-amyloid precursor protein. Although the underlying mechanism in which presenilin mutations lead to development of AD remains elusive, one consistent mutational effect is an overproduction of long-tailed amyloid beta-peptides. Furthermore, presenilins interact with beta-catenin to form presenilin complexes and presenilin mutations effect beta-catenin signalling pathways.  相似文献   
8.
The majority of early-onset familial Alzheimer disease cases are caused by mutations in the genes encoding presenilin 1 (PS1) and presenilin 2 (PS2). Presenilin mutations have been hypothesised to cause Alzheimer disease either by altering amyloid precursor protein metabolism or by increasing the vulnerability of neurons to undergo death by apoptosis. We showed previously that PS1 exon 9 deletion (PS1 DeltaE9) and L250S mutations predispose SH-SY5Y neuroblastoma cells to high glucose stress-induced apoptosis and that the anti-apoptotic effect of insulin-like growth factor I (IGF-I) is compromised by these mutations. The present study investigates whether the susceptibility of PS1 mutation transfected SH-SY5Y cells to undergo apoptosis is likely due to a downregulation of Akt/protein kinase B (Akt), a key intermediate in the phosphatidylinositol 3 (PI3)-kinase arm of the IGF-I signaling pathway. We used two methods to determine the regulation of Akt in response to the pro-apoptotic stimuli of serum deprivation and high glucose stress, as well as treatment with IGF-I. We also looked at the phosphorylatiom state of GSK-3beta at Ser9. Using a kinase assay with immunoprecipitated Akt, we detected an increased Akt activity in PS1 L250S cells at 1 hr after the combination of 20 mM glucose plus 10 nM IGF-I, when compared to the other cell types. This effect, however, was transient in that no mutation related differences were seen at either 6- or 24-hr post-treatment. Immunoblotting for Phospho-Akt as a ratio of total Akt, as well as for GSK-3beta phosphorylated at Ser9 revealed no apparent between cell type and treatment differences. This data strongly indicates that PS1 wt and mutant cells show no major differences in the pattern of Akt regulation after exposure to the pro-apoptotic stimuli of either serum deprivation or high glucose stress, or treatment with IGF-I. It is suggested that another component of IGF-I signaling is likely disrupted in these cells to increase their vulnerability to undergo death by apoptosis.  相似文献   
9.
Mice with knock-in of two mutations that affect beta amyloid processing and levels (2xKI) exhibit impaired spatial memory by 9-12 months of age, together with synaptic plasticity dysfunction in the hippocampus. The goal of this study was to identify changes in the molecular and structural characteristics of synapses that precede and thus could exert constraints upon cellular mechanisms underlying synaptic plasticity. Drebrin A is one protein reported to modulate spine sizes and trafficking of proteins to and from excitatory synapses. Thus, we examined levels of drebrin A within postsynaptic spines in the hippocampus and entorhinal cortex. Our electron microscopic immunocytochemical analyses reveal that, by 6 months, the proportion of hippocampal spines containing drebrin A is reduced and this change is accompanied by an increase in the mean size of spines and decreased density of spines. In the entorhinal cortex of 2xKI brains, we detected no decrement in the proportion of spines labeled for drebrin A and no significant change in spine density at 6 months, but rather a highly significant reduction in the level of drebrin A immunoreactivity within each spine. These changes are unlike those observed for the somatosensory cortex of 2xKI mice, in which synapse density and drebrin A immunoreactivity levels remain unchanged at 6 months and older. These results indicate that brains of 2xKI mice, like those of humans, exhibit regional differences of vulnerability, with the hippocampus exhibiting the first signatures of structural changes that, in turn, may underlie the emergent inability to update spatial memory in later months.  相似文献   
10.
42 peptide aggregation and deposition is an important component of the neuropathology of Alzheimer's disease (AD). Gene-gun mediated gene vaccination targeting Aβ42 is a potential method to prevent and treat AD. APPswe/PS1ΔE9 transgenic (Tg) mice were immunized with an Aβ42 gene construct delivered by the gene gun. The vaccinated mice developed Th2 antibodies (IgG1) against Aβ42. The Aβ42 levels in brain were decreased by 41% and increased in plasma 43% in the vaccinated compared with control mice as assessed by ELISA analysis. Aβ42 plaque deposits in cerebral cortex and hippocampus were reduced by 51% and 52%, respectively, as shown by quantitative immunolabeling. Glial cell activation was also significantly attenuated in vaccinated compared with control mice. One rhesus monkey was vaccinated and developed anti-Aβ42 antibody. These new findings advance significantly our knowledge that gene-gun mediated Aβ42 gene immunization effectively induces a Th2 immune response and reduces the Aβ42 levels in brain in APPswe/PS1ΔE9 mice. Aβ42 gene vaccination may be safe and efficient immunotherapy for AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号