首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   10篇
  国内免费   5篇
儿科学   1篇
基础医学   35篇
口腔科学   1篇
临床医学   11篇
内科学   47篇
皮肤病学   1篇
神经病学   2篇
外科学   5篇
综合类   7篇
预防医学   3篇
药学   15篇
中国医学   1篇
肿瘤学   16篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   10篇
  2014年   14篇
  2013年   10篇
  2012年   9篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有145条查询结果,搜索用时 31 毫秒
1.
Targeting in a cellular level is still one of the major challenges in biomedical treatments. However, new synthetic and analytical techniques now allow the development of precisely prepared macromolecules. Thus, glycopolymer chains are reported to be prepared with controlled length, monomer sequences, as well as chain‐folded structures. A high level of complexity in synthetic macromolecules also allows increased selectivity in targeting, which is a key factor in biomedical applications.  相似文献   
2.
BACKGROUND: A rapid method for the purification of the major 43-kDa allergen of Cupressus arizonica pollen, Cup a 1, was developed. METHODS: The salient feature was a wash of the pollen in acidic buffer, followed by an extraction of the proteins and their purification by chromatography. Immunoblotting, ELISA, and lectin binding were tested on both the crude extract and the purified Cup a 1. Biochemical analyses were performed to assess the Cup a 1 isoelectric point, its partial amino-acid sequence, and its glycan composition. RESULTS: Immunochemical analysis of Cup a 1 confirmed that the allergenic reactivity is maintained after the purification process. Partial amino-acid sequencing indicated a high degree of homology between Cup a 1 and allergenic proteins from the Cupressaceae and Taxodiaceae families displaying a similar molecular mass. The purified protein shows one band with an isoelectric point of 5.2. Nineteen out of 33 sera (57%) from patients allergic to cypress demonstrated significant reactivity to purified Cup a 1. MALDI-TOF mass spectrometry indicated the presence of three N-linked oligosaccharide structures: GnGnXF(3) (i.e., a horseradish peroxidase-type oligosaccharide substituted with two nonreducing N-acetylglucosamine residues), GGnXF(3)/GnGXF(3) (i.e., GnGnXF with one nonreducing galactose residue), and (GF)GnXF(3)/Gn(GF)XF(3) (with a Lewisa epitope on one arm) in the molar ratio 67:8:23. CONCLUSION: The rapid purification process of Cup a 1 allowed some fine studies on its properties and structure, as well as the evaluation of its IgE reactivity in native conditions. The similarities of amino-acid sequences and some complex glycan stuctures could explain the high degree of cross-reactivity among the Cupressaceae and Taxodiaceae families.  相似文献   
3.

Background

Increased body fat may be associated with an increased risk of developing an underlying pro-inflammatory state, thus leading to greater risk of developing certain chronic conditions. Immunoglobulin G has the ability to exert both anti- and pro-inflammatory effects, and the N-glycosylation of the fragment crystallisable portion is involved in mediating this process. Body mass index, a rudimentary yet gold standard indication for body fat, has been shown to be associated with agalactosylated immunoglobulin G N-glycans.

Aim

We aimed to determine the association between increased body fat and the immunoglobulin G glycosylation features, comparing body mass index to other measures of body fat distribution.

Methods

We investigated a sample of 637 community-based 45–69?year olds, with mixed phenotypes, residing in Busselton, Western Australia. Body mass index and the waist-to-hip and waist-to-height ratios were calculated using anthropometry, while dual-energy x-ray absorptiometry was performed to gain an accurate measure of total and area specific body fat. Serum immunoglobulin GN-glycans were analysed by ultra-performance liquid chromatography.

Results

Twenty-two N-glycan peaks were found to be associated with at least one of the fat measures. While the previous association of body mass index to agalactosylated immunoglobulin G was replicated, measures of central adiposity explained the most variation in the immunoglobulin G glycome.

Conclusion

Central adiposity is associated with an increased pro-inflammatory fraction of immunoglobulin G, suggesting that the android/gynoid ratio or waist-to-height ratio instead be considered when controlling for adiposity in immunoglobulin G glycome biomarker studies.  相似文献   
4.
Background Alcohol consumption is associated with increased serum IgE of unknown specificity. Objective To investigate the prevalence of specific IgE to cross‐reactive carbohydrate determinants (CCDs) in adults, and its relation to alcohol consumption. Methods Population‐based survey of 457 adults (218 abstainers, 195 light‐to‐moderate drinkers, 44 heavy drinkers). Specific IgE determinations included a CCD (MUXF3, the Nglycan of bromelain), pollens (Lolium perenne and Olea europaea), Hymenoptera venoms (Apis mellifera and Vespula spp.), and a mite (Dermatophagoides pteronyssinus). We replicated these studies in an additional sample of alcoholics (n=138). Inhibition assays were performed in selected cases. Results In the general population, 5.6% of individuals (95% confidence interval 3.5–7.6%) showed positive (0.35 kU/L) CCD‐specific IgE. The levels of CCD‐specific IgE were particularly high in heavy drinkers, who also showed a high prevalence of positive IgE to pollens and Hymenoptera venoms, doubling (at least) the prevalence found in alcohol abstainers and light‐to‐moderate drinkers. The presence of IgE to pollens and Hymenoptera venoms was closely correlated with the presence of CCD‐specific IgE. These features were confirmed in the additional sample of alcoholics. Inhibition studies indicated a role of CCD interference in IgE positivity to pollen and Hymenoptera allergens in alcoholics. Conclusions CCD‐specific IgE is prevalent in heavy drinkers, and is associated with positive IgE to pollens and Hymenoptera venoms. Specific IgE results should be interpreted with caution in heavy drinkers.  相似文献   
5.
Mabry syndrome is a glycophosphatidylinositol (GPI) deficiency characterized by intellectual disability, distinctive facial features, intractable seizures, and hyperphosphatasia. We expand the phenotypic spectrum of inherited GPI deficiencies with novel bi-allelic phosphatidylinositol glycan anchor biosynthesis class O (PIGO) variants in a neonate who presented with intractable epilepsy and complex gastrointestinal and urogenital malformations.  相似文献   
6.
7.
Lack of cell surface glycosylphosphatidylinositol (GPI)‐anchored protein(s) has been used as a reporter of Pig‐a gene mutation in several model systems. As an extension of this work, our laboratory initiated development of an in vitro mutation assay based on the flow cytometric assessment of CD90.2 expression on the cell surface of the mouse lymphoma cell line L5178Y/Tk+/?. Cells were exposed to mutagenic and nonmutagenic compounds for 24 hr followed by washout and incubation for an additional 7 days. Following this mutant manifestation time, cells were labeled with fluorescent antibodies against CD90.2 and CD45 antigens. These reagents indicated the presence of GPI‐anchored proteins and general cell surface membrane receptor integrity, respectively. Instrument set‐up was aided by parallel processing of a GPI anchor‐deficient subclone. Results show that the mutagens reproducibly caused increased frequencies of mutant phenotype cells, while the nonmutagens did not. Further modifications to the method, including application of a viability dye and an isotype control for instrument set‐up, were investigated. As a means to verify that the GPI‐anchored protein‐negative phenotype reflects bona fide Pig‐a gene mutation, sequencing was performed on 38 CD90.2‐negative L5178Y/Tk+/? clones derived from cultures treated with ethyl methanesulfonate. All clones were found to have mutation(s) within the Pig‐a gene. The continued investigation of L5178Y/Tk+/? cells, CD90.2 labeling, and flow cytometric analysis as the basis of an in vitro mutation assay is clearly supported by this work. These data also provide evidence of the reliability of using GPI anchor‐deficiency as a valid reporter of Pig‐a gene mutation. Environ. Mol. Mutagen. 59:18–29, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
8.
Numerous protists and rare fungi have truncated Asn-linked glycan precursors and lack N-glycan-dependent quality control (QC) systems for glycoprotein folding in the endoplasmic reticulum. Here, we show that the abundance of sequons (NXT or NXS), which are sites for N-glycosylation of secreted and membrane proteins, varies by more than a factor of 4 among phylogenetically diverse eukaryotes, based on a few variables. There is positive correlation between the density of sequons and the AT content of coding regions, although no causality can be inferred. In contrast, there appears to be Darwinian selection for sequons containing Thr, but not Ser, in eukaryotes that have N-glycan-dependent QC systems. Selection for sequons with Thr, which nearly doubles the sequon density in human secreted and membrane proteins, occurs by an increased conditional probability that Asn and Thr are present in sequons rather than elsewhere. Increasing sequon densities of the hemagglutinin (HA) of influenza viruses A/H3N2 and A/H1N1 during the past few decades of human infection also result from an increased conditional probability that Asn, Thr, and Ser are present in sequons rather than elsewhere. In contrast, there is no selection on sequons by this mechanism in HA of A/H5N1 or 2009 A/H1N1 (Swine flu). Very strong selection for sequons with both Thr and Ser in glycoprotein of Mr 120,000 (gp120) of HIV and related retroviruses results from this same mechanism, as well as amino acid composition bias and increases in AT content. We conclude that there is Darwinian selection for sequons in phylogenetically disparate eukaryotes and viruses.  相似文献   
9.
Galectin-3 is a glycan-binding protein (GBP) that binds β-galactoside glycan structures to orchestrate a variety of important biological events, including the activation of hepatic stellate cells and regulation of immune responses. While the requisite glycan epitopes needed to bind galectin-3 have long been elucidated, the cellular glycoproteins that bear these glycan signatures remain unknown. Given the importance of the three-dimensional (3D) arrangement of glycans in dictating GBP interactions, strategies that allow the identification of GBP receptors in live cells, where the native glycan presentation and glycoprotein expression are preserved, have significant advantages over static and artificial systems. Here we describe the integration of a proximity labeling method and quantitative mass spectrometry to map the glycan and glycoprotein interactors for galectin-3 in live human hepatic stellate cells and peripheral blood mononuclear cells. Understanding the identity of the glycoproteins and defining the structures of the glycans will empower efforts to design and develop selective therapeutics to mitigate galectin-3–mediated biological events.

The noncovalent interactions between glycan-binding proteins (GBPs) and glycans dictate many important biological events. Among such GBPs is galectin-3, a 26-kDa β-galactoside GBP that plays key roles in many physiological and pathological events (1). In hepatic fibrosis, a disease that manifests as the excessive buildup of scar tissue, liver-resident macrophages secrete galectin-3 (2, 3), which then binds cell surface glycans on quiescent hepatic stellate cells (HSCs), activating them to transdifferentiate into a muscle-like phenotype. Galectin-3–null mice exhibit attenuated liver fibrosis even after induced injury, highlighting its critical role (3). Galectin-3 is also known to interact with cells of the innate immune system (4, 5) to regulate apoptosis (6) or control dendritic cell differentiation (7). In these cases, as well as in other cases in which galectin-3 is involved, the full complement of interacting glycoprotein receptors remains unknown.Despite significant advances in glycoscience, the study of GBP–glycan interactions and the identification of glycan-mediated counter-receptors remains a recurring challenge. Capturing these binding events often requires some form of artificial reconstitution to amplify individually weak interactions into high-avidity binding. Indeed, glycan microarrays with defined mixtures of homogenous glycans or recombinant GBPs have significantly propelled our understanding of glycan-mediated function (8). Conventional immunoprecipitation and lectin affinity techniques using cell lysates have similarly been used to reveal an initial catalog of 100 to 185 galectin-3–associated proteins (914). However, these manipulations alter the cell’s native and three-dimensional (3D) configuration and multivalent arrangement, both of which are critically important in the study of GBP–glycan interactions (15, 16).Another key issue involves the underlying glycoprotein ligand. Although many glycoproteins carry the glycan epitope for binding a GBP, only a limited set should be recognized as physiologically relevant receptors, owing to the physical constraints imposed by the living cell (17). While often overlooked, the glycoprotein carrying the glycan can impart specific biological functions to a GBP–glycan binding event (17). Recent work has put forth the concept of “professional glycoprotein ligands,” in which a specific set of glycoproteins (instead of a broadly defined glycome) can exhibit exquisite binding and functional roles (18). Thus, determining the identity of the underlying core protein that anchors the glycan can be greatly empowering. Not only can it provide an understanding of the 3D arrangement of the glycan (if the 3D structure of the core protein is known), but it can also provide additional insight into its expression levels in different cell types and tissues, further informing strategies for selective drug development.Thus, comprehensive approaches that permit the study of GBP–glycan interactions in live cells while simultaneously facilitating identification of the physiological glycoprotein receptors have great potential to impact glycoscience. We hypothesize that proximity labeling strategies (19) using an engineered ascorbate peroxidase, APEX2 (20), could be compatible for elucidating glycan-mediated GBP–glycoprotein interactions. In this approach (Fig. 1), APEX2 is fused to a protein of interest, followed by the treatment of cells with biotin-phenol and subsequently with hydrogen peroxide (H2O2). Under these conditions, APEX2 catalyzes the formation of highly reactive, short-lived (<1 ms), and proximally restricted (<20 nm) biotin-phenoxyl radicals that covalently tag nearby electron-rich residues. The biotinylated proteins can then be enriched and identified using quantitative mass spectrometry (MS)-based proteomics. Because the (glyco)proteins adjacent to the APEX2 fusion protein are preferentially biotinylated, the resulting MS data provide a readout of its immediate environment.Open in a separate windowFig. 1.Schematic illustration of the identification of galectin-3 (Gal-3) interacting proteins by in situ proximity labeling. Recombinant APEX2 and galectin-3 fusion proteins are applied to living cells where galectin-3 can freely diffuse to bind its cognate ligands. On addition of biotin phenol (yellow circle with “B”; 30 min) and hydrogen peroxide (H2O2; 1 min), APEX2 catalyzes the formation of highly-reactive biotin-phenoxyl radicals that react within a short range (<20 nm) of the galectin-3 complex within a short time frame (<1 ms). The biotin-tagged protein interactors can then be identified using MS-based proteomics.We reasoned that proximity labeling could offer significant advantages over other approaches to determining GBP–glycan interactions, including the opportunity to perform the labeling in live cells and the ability to tag weakly bound glycan-mediated interactors, as the covalent biotinylation reaction ensures that the enrichment step no longer relies on weak GBP–glycan interactions alone. When coupled with inhibitors, the proximity labeling strategy can also distinguish between glycan-mediated and non–glycan-mediated interactors. Integration of this approach with quantitative MS-based proteomics would also expedite the assignment of the interacting proteins and provide calculable measures to distinguish interactors from nonspecific binders.Here we report that the use of an APEX2 and galectin-3 fusion protein (PX-Gal3) provides a sensitive and comprehensive approach to mapping the proteome-wide glycan-mediated galectin-3 interactome in live human HSCs and peripheral blood mononuclear cells (PBMCs). We found that the exogenous incubation of cells with PX-Gal3 in HSCs leads to glycan-dependent interactions, whereas its cellular overexpression does not. We further validated the interactions between galectin-3 and candidate proteins in vitro and discovered that some proteins are direct glycan-mediated receptors. Using MS-based glycomics, we also examined the glycomes of HSC surfaces, PX-Gal3 tagged glycoproteins, and an individual glycoprotein receptor for galectin-3. Our results highlight the utility of the in situ proximity labeling approach in discovering physiologically relevant GBP interactors in living cells.  相似文献   
10.
Correlating the structures and properties of a polymer to its monomer sequence is key to understanding how its higher hierarchy structures are formed and how its macroscopic material properties emerge. Carbohydrate polymers, such as cellulose and chitin, are the most abundant materials found in nature whose structures and properties have been characterized only at the submicrometer level. Here, by imaging single-cellulose chains at the nanoscale, we determine the structure and local flexibility of cellulose as a function of its sequence (primary structure) and conformation (secondary structure). Changing the primary structure by chemical substitutions and geometrical variations in the secondary structure allow the chain flexibility to be engineered at the single-linkage level. Tuning local flexibility opens opportunities for the bottom-up design of carbohydrate materials.

Natural polymers adopt a multitude of three-dimensional structures that enable a wide range of functions (1). Polynucleotides store and transfer genetic information; polypeptides function as catalysts and structural materials; and polysaccharides play important roles in cellular structure (26), recognition (5), and energy storage (7). The properties of these polymers depend on their structures at various hierarchies: sequence (primary structure), local conformation (secondary structure), and global conformation (tertiary structure).Automated solid-phase techniques provide access to these polymers with full sequence control (812). The correlation between the sequence, the higher hierarchy structures, and the resulting properties is relatively well established for polynucleotides (13, 14) and polypeptides (15, 16), while comparatively little is known for polysaccharides (17). Unlike polypeptides and polynucleotides, polysaccharides are based on monosaccharide building blocks that can form multiple linkages with different configurations (e.g., α- or β-linkages) leading to extremely diverse linear or branched polymers. This complexity is exacerbated by the flexibility of polysaccharides that renders structural characterization by ensemble-averaged techniques challenging (17). Imaging single-polysaccharide molecules using atomic force microscopy has revealed the morphology and properties of polysaccharides at mesoscopic, submicrometer scale (1822). However, imaging at such length scales precludes the observation of individual monosaccharide subunits required to correlate the polysaccharide sequence to its molecular structure and flexibility, the key determinants of its macroscopic functions and properties (23).Imaging polysaccharides at subnanometer resolution by combining scanning tunnelling microscopy (STM) and electrospray ion-beam deposition (ES-IBD) (24, 25) allows for the observation of their monosaccharide subunits to reveal their connectivity (2628) and conformation space (29). Here, we use this technique to correlate the local flexibility of an oligosaccharide chain to its sequence and conformation, the lowest two structural hierarchies. By examining the local freedom of the chain as a function of its primary and secondary structures, we address how low-hierarchy structural motifs affect local oligosaccharide flexibility—an insight critical to the bottom-up design of carbohydrate materials (30).We elucidate the origin of local flexibility in cellulose, the most abundant polymer in nature, composed of glucose (Glc) units linked by β-1,4–linkages (3133). Unveiling what affects the flexibility of cellulose chains is important because it gives rise to amorphous domains in cellulose materials (3437) that change the mechanical performance and the enzyme digestibility of cellulose (38). Cellohexaose, a Glc hexasaccharide (Fig. 1A), was used as a model for a single-cellulose chain as it has been shown to resemble the cellulose polymer behavior (12). Modified analogs prepared by Automated Glycan Assembly (AGA) (11, 12) were designed to manipulate particular intramolecular interactions responsible for cellulose flexibility. Cellohexaose, ionized as a singly deprotonated ion in the gas phase ([M-H]−1) was deposited on a Cu(100) surface held at 120 K by ES-IBD (24) (Materials and Methods). The ions were landed with 5-eV energy, well suited to access diverse conformation states of the molecule without inducing any chemical change in the molecule (29). The resulting cellohexaose observed in various conformation states allowed its mechanical flexibility (defined by the variance in the geometrical bending between two residues) to be quantified for every intermonomer linkage. The observed dependence of local flexibility on the oligosaccharide sequence and conformation thus exemplifies how primary and secondary structures tune the local mechanical flexibility of a carbohydrate polymer.Open in a separate windowFig. 1.STM images of cellohexaose (AAAAAA) and its analogs (AXAAXA). Structures and STM images of cellohexaose (A) and its substituted analogs (BE). Cellohexaose contains six Glcs (labeled as A; colored black) linked via β-1,4–glycosidic bonds. The cellohexaose analogs contain two substituted Glcs, as the second and the fifth residues from the nonreducing end, that have a single methoxy (–OCH3) at C(3) (labeled as B; colored red), two methoxy groups at C(3) and C(6) (labeled as C; colored green), a single carboxymethoxy (–OCH2COOH) at C(3) (labeled as D; colored blue), and a single fluorine (–F) at C(3) (labeled as F; colored purple).The effect of the primary structure on the chain flexibility was explored using sequence-defined cellohexaose analogs (Fig. 1). Cellohexaose, AAAAAA (Fig. 1A), was compared with its substituted analogs, ABAABA, ACAACA, ADAADA, and AFAAFA (written from the nonreducing end) (Fig. 1 BE), where A is Glc, B is Glc methylated at OH(3), C is Glc methylated at OH(3) and OH(6), D is Glc carboxymethylated at OH(3), and F is Glc deoxyfluorinated at C(3). These substitutions are designed to alter the intramolecular hydrogen bonding between the first and the second as well as between the fourth and fifth Glc units (Fig. 1). These functional groups also affect the local steric environment (i.e., the bulky carboxymethyl group) (Fig. 1D) and the local electronic properties (i.e., the electronegative fluorine group) (Fig. 1E). When compared with the unsubstituted parent cellohexaose, these modified cellohexaoses exhibit different aggregation behavior and are more water soluble (12).All cellohexaose derivatives adsorbed on the surface were imaged with STM at 11 K (Fig. 1). The oligosaccharides were deposited as singly deprotonated species and were computed to adsorb on the surface via a single covalent RO–Cu bond, except for ADAADA which was deposited as doubly deprotonated species and was computed to adsorb on the surface via two covalent RCOO–Cu bonds (R = sugar chain). All cellohexaoses appear as chains containing six protrusions corresponding to the six constituent Glcs. The unmodified cellohexaose chains (Fig. 1A) mainly adopt a straight geometry, while the substituted cellohexaoses (Fig. 1 BE) adopt both straight- and bent-chain geometries. Chemical substitution thus increases the geometrical freedom of the cellulose chain, consistent with the reported macroscopic properties (12).Large-chain bending between neighboring Glc units is observed exclusively for the substituted cellohexaose (Fig. 1). The large, localized bending reveals the substitution site and allows for the nonreducing and the reducing ends of the chain to be identified. These chains are understood to bend along the surface plane via the glycosidic linkage without significant tilting of the pyranose ring that remains parallel to the surface (illustrated in SI Appendix, Fig. S1), as indicated by the ∼2.0-Å height of every Glc (29).The bending angle measured for AA and AX linkages (Fig. 2; Materials and Methods has analysis details) shows that, while both AA and AX prefer the straight, unbent geometry, AX displays a greater variation of bending angles than AA. AX angular distribution is consistently ∼10° wider than that for AA, indicating that AX has a greater conformational freedom than AA. This increased bending flexibility results from the absence of the intramolecular hydrogen bonding between OH(3) and O(5) of the neighboring residue. Methylation of OH(6), in addition to methylation of OH(3), results in similar flexibility (Fig. 2 B and C), suggesting the greater importance of OH(3) in determining the bending flexibility. Steric effects were found to be negligible since AD displayed similar flexibility to other less bulky AX linkages.Open in a separate windowFig. 2.Bending flexibility of AA linkage and substituted AX linkages. Chain bending (Fig. 1) is quantified as an angle formed between two neighboring Glcs (Materials and Methods). The results are given in A for AA, in B for AB, in C for AC, in D for AD, and in E for AF, showing that AX (where X = B, C, D, F) has a higher conformational freedom than AA. The angle distributions (bin size: 10°) are fitted with a Gaussian (solid line) shown with its half-width half-maximum. The computed potential energy curves are shown with the half-width at 0.4 eV and fitted with a parabola to estimate its stiffness (k; in millielectronvolts per degree2).Density functional theory (DFT) calculations support the observations, showing that substitution of OH(3) decreases the linkage stiffness by up to ∼40% (Fig. 2). Replacing OH(3) with other functional groups weakens the interglucose interactions by replacing the OH(3)··O(5) hydrogen bond with weak Van der Waals interactions. The similar flexibility between AB and AC linkages is attributed to the similar strength of the interglucose OH(2)··OH(6) hydrogen bond in AB (Fig. 2B) and the OH(2)··OMe(6) hydrogen bond in AC (Fig. 2C). The negligible steric effect in AD is attributed to the positional and rotational freedom of the bulky moiety that prevents any “steric clashes” and diminishes the contribution of steric repulsion in the potential energy curve. Comparing the potential landscape in the gas phase and on the surface shows that the stiffness of the adsorbed cellohexaoses is primarily dictated by their intramolecular interactions instead of molecule–surface interactions (SI Appendix, Fig. S2). Primary structure alteration by chemical substitution modifies the interglucose hydrogen bonds and enables chain flexibility to be locally engineered at the single-linkage level.We subsequently investigate how molecular conformation (secondary structure) affects the local bending flexibility. We define the local secondary structure as the geometry formed between two Glcs, here exemplified by the local twisting of the chain (Fig. 3). The global secondary structure is defined as the overall geometry formed by all Glcs in the chain, here exemplified by the linear and cyclic topologies of the chain (Fig. 4).Open in a separate windowFig. 3.Bending flexibility of untwisted and twisted AA linkages. (A) STM image of a cellohexaose containing two types of AA linkages: untwisted (HH and VV) and twisted (HV and VH; from the nonreducing end). The measured bending angles and the computed potential curve are given in B for HH, in C for HV, and in D for VV, showing that the twisted linkage (HV) is more flexible than the untwisted ones (HH and VV). In the molecular structures, interunit hydrogen bonds are given as dotted blue lines, and the pyranose rings are colored red for the horizontal ring (H) and green for vertical (V). The angle distributions (bin size: 10°) are fitted with a Gaussian distribution (solid line) labeled with its peak and half-width half-maximum. The computed potential curves are labeled with its half-width at 0.4 eV and fitted with a parabola to estimate its stiffness (k; in millielectronvolts per degree2).Open in a separate windowFig. 4.Bending flexibility of AA linkage in linear (LIN) and cyclic (CYC) chains. STM image, measured bending angle distribution, and computed potential of AA linkage are given in A for a linear cellohexaose conformer and in B for a cyclic cellohexaose conformer, showing that chain flexibility is reduced in conformations with cyclic topology. The same data are given in C for α-cyclodextrin that is locked in a conformation with cyclic topology. The measured angles (bin size: 10°) are each fitted with a Gaussian distribution (solid line) labeled with its peak and half-width half-maximum. The computed potentials are each labeled with its half-width at 0.4 eV and fitted with a parabola to estimate its stiffness (k; in millielectronvolts per degree2).The effect of local secondary structure on chain flexibility is exemplified by the bending flexibility of twisted and untwisted linkages in a cellohexaose chain (Fig. 3A). The untwisted and twisted linkages are present due to the Glc units observed in two geometries, H or V (Fig. 3), distinguished by their heights (h). H (h ∼ 2.0 Å) is a Glc with its pyranose ring parallel to the surface, while V (h ∼ 2.5 Å) has its ring perpendicular to the surface (29). These lead to HH and VV as untwisted linkages and HV and VH (written from nonreducing end) as twisted linkages.The twisted linkage is more flexible than the untwisted one, as shown by the unimodal bending angles for the untwisted linkage (HH and VV in Fig. 3 B and D, respectively) and the multimodal distribution for the twisted linkage (HV in Fig. 3C). DFT calculations attribute the increased bending flexibility to the reduction of accessible interunit hydrogen bonds from two to one. Linkage twisting increases the distance between the hydrogen-bonded pair, which weakens the interaction between Glc units and increases the flexibility at the twisting point. The increase in local chain flexibility conferred by chain twisting shows how local secondary structures affect chain flexibility.The effect of the global secondary structure on the local chain flexibility was examined by comparing the local bending flexibility of cellohexaose chains possessing different topologies. Cellohexaose can adopt either linear (Figs. 3A and and4A)4A) or cyclic topology (Fig. 4B), the latter characterized by the presence of a circular, head-to-tail hydrogen bond network (29). The cyclic conformation of cellohexaose is enabled by the head-to-tail chain folding from the 60° chain bending of the VV linkage. The VV segment in the cyclic chain is stiffer than in the linear chain since the bending angle distribution for the cyclic chain is 6° narrower than that for the linear chain. The observation is corroborated by DFT calculations that show that the VV linkage in the cyclic chain is about three times stiffer than that in the linear chain.To characterize the degree of chain stiffening due to the linear-to-cyclic chain folding, we compare the flexibility of the cyclic cellohexaose and α-cyclodextrin (an α-1,4–linked hexaglucose covalently locked in cyclic conformation). The α-cyclodextrin provides the referential local flexibility for a cyclic oligosaccharide chain. Strikingly, the local flexibility in α-cyclodextrin was found to be identical to that in the cyclic cellohexaose, as evidenced by the similar width of the bending angle distribution and the computed potentials (Fig. 4 B and C). The similar stiffness indicates that the folding-induced stiffening in cellohexaose is a general topological effect unaffected by the type of the interactions that give the cyclic conformation (noncovalent hydrogen bond in cellohexaose vs. covalent bond in α-cyclodextrin). The folding-induced stiffening is the result of the creation of a circular spring network that restricts the motion of Glc units and reduces their conformational freedom. The folding-induced stiffening reported here provides a mechanism by which carbohydrate structures can be made rigid. The dependence of the local chain flexibility on the chain topology shows how global secondary structures modify local flexibility.Using cellulose as an example, we have quantified the local flexibility of a carbohydrate polymer and identified structural factors that determine its flexibility. Modification of the carbohydrate primary structure by chemical substitution alters the mechanical flexibility at the single-linkage level. Changing secondary structure by chain twisting and folding provides additional means to modify the flexibility of each linkage. Control of these structural variables enables tuning of polysaccharide flexibility at every linkage as a basis for designing and engineering carbohydrate materials (30). Our general approach to identify structural factors affecting the flexibility of a specific molecular degrees of freedom in a supramolecular system should aid the design of materials and molecular machines (39) and the understanding of biomolecular dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号