首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
药学   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The aim of this study was to investigate intravitreal injection of silk fibroin nanoparticles (SFNs) encapsulating bio-macromolecules, achieving enhanced drug bioavailability, and extended retention in retina. SFNs were prepared with regenerated silk fibroin using desolvation method with fluorescein isothiocyanate labeled bovine serum albumin (FITC-BSA) as bio-macromolecular model drug encapsulated. In vitro physicochemical properties and in vitro drug release of FITC-BSA loaded SFNs (FITC-BSA-SFNs) were evaluated. Cytotoxicity, cellular uptake, and retention of FITC-BSA-SFNs were determined in human retinal pigment epithelial cell line (ARPE-19). In addition, in vivo distribution and safety of intravitreally administered FITC-BSA-SFNs were investigated in New Zealand white rabbits. The particle size of FITC-BSA-SFNs was 179.1?±?3.7?nm with polydispersity index of 0.102?±?0.033 and the zeta potential was greater than ?25?mV. FITC-BSA-SFNs exhibited excellent biocompatibility with no cytotoxicity observed within 24 and 48?h in AREP-19 cells. Compared to FITC-BSA solution, FITC-BSA-SFNs showed enhanced cellular uptake and prolonged retention. Furthermore, FITC-BSA-SFNs achieved accumulated distribution and extended retention in retina in vivo following intravitreal injection compared to a single administration of free drug solution. Therefore, this bio-macromolecule delivery platform based on SFNs could have great potential in the treatment of posterior segment disorders.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号