首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
基础医学   2篇
内科学   1篇
神经病学   5篇
药学   16篇
  2017年   1篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Several lines of evidence suggest a crucial involvement of glutamate in the mechanism of action of anxiolytic drugs including the involvement of group I metabotropic glutamate (mGlu) receptors. Given the recent discovery of a selective and brain penetrable mGlu5 receptor antagonists, the effect of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP), i.e. the most potent mGlu5 antagonist, was evaluated in established models of anxiety after single or repeated administration. We also studied if the anxiolytic effect of MTEP is mediated by mechanism involving the GABA-benzodiazepine (BZD) receptor complex. Experiments were performed on male Wistar rats or male Albino Swiss mice. The anxiolytic-like effects of MTEP were tested in the conflict drinking test and the elevated plus-maze test in rats as well as in the four-plate test in mice. MTEP (0.3-3.0 mg/kg) induced anxiolytic-like effects in the conflict drinking test (after single and repeated administration) and in the elevated plus-maze test in rats. In the four-plate test in mice, it exerted anxiolytic activity at a dose of 20 mg/kg. MTEP had no effect on the locomotor activity of animals. The anxiolytic-like effect of MTEP was not changed by BZD antagonist flumazenil. Moreover, a synergistic interaction between non-effective doses of MTEP and diazepam was observed in the conflict drinking test. These data suggest that selective mGlu5 receptor antagonists mediated anxiolysis is not dependent on GABA-ergic system and that these agents may play a role in the therapy of anxiety.  相似文献   
2.
BACKGROUND & AIMS: Transient lower esophageal sphincter relaxation (TLESR) is the major mechanism of gastroesophageal acid reflux. TLESR is mediated via vagal pathways, which may be modulated by metabotropic glutamate receptors (mGluRs). Group I mGluRs (mGluR1 and 5) have excitatory effects on neurons, whereas group II (mGluR2 and 3) and group III (mGluR4, 6, 7, and 8) are inhibitory. This study determined the effect of mGluRs on triggering of TLESR and reflux in an established conscious ferret model. METHODS: Esophageal manometric/pH studies were performed in ferrets with chronic esophagostomies. TLESR were induced by a gastric load of 25 mL glucose (pH 3.5) and 30 mL air. RESULTS: In control treated animals, gastric load induced 3.52 +/- 0.46 TLESRs per 47-minute study, 89.7% of which were associated with reflux episodes (n = 16). The mGluR5 antagonist MPEP inhibited TLESR dose dependently, with maximal 71% +/- 7% inhibition at 35 micromol/kg (n = 9; P < .0001). MPEP also significantly reduced reflux episodes (P < .001) and increased basal lower esophageal sphincter pressure (P < .05). MPEP inhibited swallowing dose dependently, suggesting a common action on trigger mechanisms for swallowing and TLESR. The more selective analogue, MTEP, had more potent effects (90% +/- 6% inhibition TLESR at 40 micromol/kg; n = 8; P < .0001). In contrast, the group I agonist DHPG tended to increase TLESR. The group II agonist (2R, 4R)-APDC was ineffective, whereas the group III agonist L-(AP4 slightly reduced TLESR (33% at 11 micromol/kg; P < .05). The selective mGluR8 agonist (S)-3, 4-DCPG inhibited TLESR by 54% at 15 micromol/kg (P < .01). CONCLUSIONS: mGluR5 antagonists potently inhibit TLESR and reflux in ferrets, implicating mGluR5 in the mechanism of TLESR. mGluR5 antagonists are therefore promising as therapy for patients with GERD.  相似文献   
3.
Metabotropic glutamate receptor 5 (mGluR5) is extensively involved in neural survival, differentiation, dendritic morphology, synaptic plasticity, and neural circuit formation. However, little is known about its role in neuronal polarization and axon outgrowth. In this study, we applied the selective agonist (RS)‐2‐chloro‐5‐hydroxyphenylglycine sodium salt and antagonist 3‐[(2‐methyl‐4‐thaizolyl) ethynyl] pyridine (MTEP) of mGluR5 to the cultured hippocampal neurons to observe the neuronal polarization and axon outgrowth, and further explored the possible intracellular signal transduction pathway. The results demonstrated that MTEP administration significantly attenuates the proportion of polarized neurons and the length of the axon, indicated by SMI312 (an axon marker) and Tuj‐1 (a marker of all the neurites) double‐labeling immunofluorescence. Western blot analysis showed that MTEP administration also inhibited the activation of AKT and nuclear translocation of nuclear factor‐κB (NF‐κB) p65, and decreased the phosphorylation of p65 as well. Furthermore, Akt inhibitor LY294002 treatment resulted in neuronal polarization delay and axon outgrowth retardation, while suppressing the phosphorylation and nuclear translocation of p65. We concluded that mGluR5 could regulate neuronal polarity and axon outgrowth during the morphological differentiation of rat developing neurons, and the intracellular signaling pathway of Akt–NF‐κB might be involved in the action of mGluR5. © 2016 Wiley Periodicals, Inc.  相似文献   
4.
Brain glutamate overactivity is well documented in Parkinson's disease (PD) and antiglutamatergic drugs have been proposed to relieve PD symptoms and decrease dyskinesias. Metabotropic glutamate receptors are topics of recent interest in PD. This study investigated the effects of the metabotropic glutamate receptors type 5 (mGluR5) antagonists MPEP and MTEP on motor behavior in monkeys with a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion to model PD and treated with l-Dopa the gold standard therapy. Six Macaca fascicularis MPTP monkeys were initially treated repeatedly with l-Dopa; this treatment increased their locomotion and reduced their parkinsonian scores but also induced dyskinesias. Then, a dose-response of MPEP and MTEP (1.5-30 mg/kg) administered 15 and 30 min respectively prior to l-Dopa, showed that the antiparkinsonian activity of l-Dopa was generally maintained as measured with locomotion and antiparkinsonian scores as well as the onset and duration of the l-Dopa response. Interestingly the mean dyskinesia score during all the duration of the l-Dopa motor effect, the 1 h peak period dyskinesias scores as well as the maximal dyskinesias scores were dose-dependently reduced with both drugs reaching statistical significance at 10 and 30 mg/kg. Our results showed a beneficial antidyskinetic effect of blocking mGluR5 in l-Dopa-treated MPTP monkeys. This supports the therapeutic use of an mGluR5 antagonist to restore normal brain glutamate neurotransmission in PD and decrease dyskinesias.  相似文献   
5.
Extensive research into glutamate receptors in the central nervous system has shown important role of metabotropic glutamate receptors (mGluR) as potential targets for neuroprotective drugs. The aim of the present study was to investigate neuroprotective potential of the highly selective mGlu5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) against kainate (KA)-induced excitotoxicity in vivo. Our attention was focused mainly on the effectiveness of delayed treatment. In order to evoke neuronal injury, rats were unilaterally injected with kainic acid (KA; 2.5 nmol/1 μl) into the CA1 region of the hippocampus. MTEP (1, 5 or 10 nmol/1 μl) was administered into CA1 30 min, 1, 3 and 6 h after KA. Additionally, other rats were injected intraperitoneally (i.p.) with MTEP in a dose of 1 mg/kg, once daily for 7 days. The first injection of MTEP was 1 h after KA. Seven days after treatment, the brains were taken out and analyzed histologically to estimate the total number of neurons in CA region of dorsal hippocampus using stereological methods. The study was also aimed at determining a possible influence of MTEP on neuronal glutamate release induced by KA in the hippocampus, using microdialysis method. The obtained results showed that MTEP had neuroprotective effect after both intrahippocampal and intraperitoneal injection. It was found that MTEP could prevent excitotoxic neuronal damage even when it was applied 1-6 h after the toxin. Moreover, it was observed that MTEP significantly reduced the KA-induced glutamate release in the hippocampus. It seems to play a role in mediating neuroprotective effects of MTEP.  相似文献   
6.
Several lines of evidence suggest an antidepressant-like activity for 3-[(methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP), a highly selective, non-competitive antagonist of metabotropic glutamate receptors subtype 5 (mGluR(5)). This effect has been observed following both acute and chronic MTEP treatments in behavioral tests and experimental models of depression, such as the forced swim test (FST), the tail suspension test, and the olfactory bulbectomy model of depression. However, the mechanism of action for mGluR(5) antagonists remains unclear. The aim of this study was to investigate whether the antidepressant-like action of MTEPis dependent on ionotropic glutamatergic receptors. Male Albino Swiss mice were used, and antidepressant-like activity was evaluated using the FST. The antidepressant-like effect of MTEP (0.3 mg/kg) was significantly antagonized by pre-treatment with the NMDA receptor agonist N-methyl-D-aspartic acid (NMDA, 75 mg/kg, i.p.). The AMPA receptor antagonist NBQX (10 mg/kg, i.p.) did not affect the MTEP activity. Our results indicate that the antidepressant-like activity of MTEP in the FST involves NMDA but not AMPA receptors and suggest that the interaction between mGluR(5) and NMDA receptors plays an important role in the underlying antidepressant mechanism(s).  相似文献   
7.
It hs been suggested that metabotropic glutamate receptor subtype 5 (mGluR5) play a role in the expression of anxiety, based on anxiolytic-like effects of the selective mGluR5 antagonist MPEP (2-methyl-6-(phenylethynyl)pyridine) in rodent models of anxiety, including stress-induced hyperthermia (SIH). To examine the suggested role of mGlu5 receptors in the expression of anxiety, we examined the stress response in mice lacking mGluR5 in several variations of the SIH procedure. In this paradigm, stress causes a mild increase in body temperature that can be blocked by known anxiolytic agents. Three procedures were employed: classical SIH using rectal-probe measurement of body temperature, and radiotelemetric measurement of body temperature in response to either saline injection or to the introduction of an intruder into the home cage. In all three procedures the mGluR5-knockout mice displayed a significant attenuation of the hyperthermic response to stress compared to littermate wild-type control mice. To confirm that our observations were likely to be due to the absence of mGluR5 in the knockout mice we also tested the effect of the recently described selective mGluR5 antagonist MTEP (3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine) in both the wild-type and mGluR5 knockout mice. Administration of MTEP in the wild-type mice, but not the mGluR5 knockout mice, attenuated SIH. That the mGluR5 knockout mice displayed an anxiolytic-like phenotype and that the mGluR5 antagonist, MTEP, showed a anxiolytic-like effect only in mice possessing mGluR5 further supports the suggestion that mGluR5 antagonists may be useful in the treatment of anxiety.  相似文献   
8.
《Neurological research》2013,35(9):833-840
Abstract

Objectives:

The excitotoxin 3-nitropropionic acid (3-NP) induces a suitable experimental model of Huntington’s disease (HD). This compound induces neurodegeneration via glutamatergic activation and oxidative stress, suggesting that the metabotropic glutamate receptor blockage and free radical scavenging are potential therapeutic targets in HD. In this study, we evaluated the role of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP), a selective mGlu5 receptor antagonist, in a 3-NP model of HD.

Methods:

We administered 3-NP (20 mg/kg, intraperitoneal) to rats for 4 days. MTEP at doses of 2·5 and 5 mg/kg was administered 30 min before 3-NP. Behavioral tests and biochemical experiments were performed to assess the effects of 3-NP and the ability of MTEP to ameliorate these changes.

Results:

3-NP administration induced body weight loss, decreased locomotor activity, and inhibition of succinate dehydrogenase and Na+–K+ adenosine triphosphate (ATP)ase activities in rat striatum. We also observed increases in reactive species (RS) levels and glutathione reductase activity, decreased non-protein thiol levels, and an inhibition of glutathione peroxidase activity in the striatum of rats treated with 3-NP. Notably, all of these effects were attenuated by MTEP treatment.

Discussion:

Our results demonstrate the neuroprotective effect of MTEP and reinforce the involvement of mGluR5 in 3-NP-induced oxidative stress in rat striatum.  相似文献   
9.
Microglial activation and blood brain barrier dysfunction are significant hallmarks in an array of neurodegenerative disorders. A leaky blood brain barrier potentially allows infiltration of blood-borne proteins into the CNS parenchyma, and previous studies have shown that the blood borne protein fibrinogen (FG) can activate microglia to produce a neurotoxic phenotype. Here we show that FG-mediated neurotoxicity and ERK1/2 phosphorylation in neuronal cultures is significantly attenuated by activation of metabotropic glutamate receptor 5 (mGluR5) but not mGluR2. Furthermore, FG-mediated microglial activation was down-regulated by direct mGluR5 activation on these cells but not by mGluR2, suggesting that targeting microglial mGluR5 provides neuronal protection against blood protein-triggered innate inflammatory responses.  相似文献   
10.
The purpose of the present study was to investigate whether the anxiolytic-like action of a selective and brain penetrable group I metabotropic glutamate (mGlu5) receptor antagonist 3-[(2-methyl-1,3-tiazol-4-yl)ethynyl]-pyridine (MTEP) is dependent upon the serotonergic system. Experiments were performed on male Wistar rats. The Vogel conflict drinking test was used to detect anxiolytic-like activity. MTEP administered intraperitoneally at doses of 1, 3 and 6 mg/kg induced anxiolytic-like effect. The potential anxiolytic effect of MTEP (1 mg/kg) was inhibited by a nonselective 5-HT receptor antagonist metergoline (2 mg/kg i.p.) and 5-HT2A/2C receptor antagonist ritanserin (0.5 mg/kg i.p.), but not by a 5-HT1A receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl)cyclohexane-carboxamide (WAY 100635) (0.1 mg/kg i.p). The anxiolytic effect of MTEP (6 mg/kg) was attenuated by ritanserin (1 mg/kg i.p.). Moreover, MTEP-induced a dose-dependent release of serotonin in the frontal cortex. The obtained results suggest that the potential anxiolytic effect of the mGlu5 receptor antagonist MTEP is due to the increased serotonin release with subsequent activation of 5-HT2A/2C receptors, most probably located postsynaptically, but not by the 5-HT1A receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号