首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
儿科学   1篇
基础医学   1篇
内科学   4篇
神经病学   12篇
眼科学   8篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2005年   1篇
  1984年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
The perception of a visual event (e.g., a flock of birds) at the present moment can be biased by a previous perceptual experience (e.g., the perception of an earlier flock). Serial dependence is a perceptual bias whereby a current stimulus appears more similar to a previous one than it actually is. Whereas serial dependence emerges within several visual stimulus dimensions, whether it could simultaneously operate across different dimensions of the same stimulus (e.g., the numerosity and the duration of a visual pattern) remains unclear. Here we address this question by assessing the presence of serial dependence across duration and numerosity, two stimulus dimensions that are often associated and can bias each other. Participants performed either a duration or a numerosity discrimination task, in which they compared a constant reference with a variable test stimulus, varying along the task-relevant dimension (either duration or numerosity). Serial dependence was induced by a task-irrelevant inducer, that is, a stimulus presented before the reference and always varying in both duration and numerosity. The results show systematic serial dependencies only within the task-relevant stimulus dimension, that is, stimulus numerosity affects numerosity perception only, and duration affects duration perception only. Additionally, at least in the numerosity condition, the task-irrelevant dimension of the inducer (duration) had an opposite, repulsive effect. These findings thus show that attractive serial dependence operates in a highly specific fashion and does not transfer across different stimulus dimensions. Instead, the repulsive influence, possibly reflecting perceptual adaptation, can transfer from one dimension to another.  相似文献   
2.
Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to “track” a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior.  相似文献   
3.
Humans share with many species a non-verbal system to estimate absolute quantity. This sense of number has been linked to the activity of quantity-selective neurons that respond maximally to preferred numerosities. With functional magnetic resonance imaging adaptation, we now show that populations of neurons in the human parietal and frontal cortex are also capable of encoding quantity ratios, or proportions, using the same non-verbal analog code as for absolute number. Following adaptation to visually presented constant proportions (specified by the ratio of line lengths or numerosities), we introduced novel relative magnitudes to examine the tuning characteristics of the population of stimulated neurons. In bilateral parietal and frontal cortex we found that blood oxygenation level-dependent signal recovery from adaptation was a function of numerical distance between the deviant proportion and the adaptation stimulus. The strongest effects were observed in the cortex surrounding the anterior intraparietal sulcus, a region considered pivotal for the processing of absolute magnitudes. Overall, there was substantial overlap of frontoparietal structures representing whole numbers and proportions. The identification of tuning to non-symbolic ratio stimuli, irrespective of notation, adds to the magnitude system a remarkable level of sophistication by demonstrating automatic access to a composite, derived quantitative measure. Our results argue that abstract concepts of both absolute and relative number are deeply rooted in the primate brain as fundamental determinants of higher-level numerical cognition.  相似文献   
4.
The perceptual representation of our environment does not only involve what we actually can see, but also inferences about what is hidden from our sight. For example, in amodal completion, simple contours or surfaces are filled-in behind occluding objects allowing for a complete representation. This is important for many everyday tasks, such as visual search, foraging, and object handling. Although there is support for completion of simple patterns from behavioral and neurophysiological studies, it is unclear if these mechanisms extend to complex, irregular patterns. Here, we show that the number of hidden objects on partially occluded surfaces is underestimated. Observers did not consider accurately the number of visible objects and the proportion of occlusion to infer the number of hidden objects, although these quantities were perceived accurately and reliably. However, visible objects were not simply ignored: estimations of hidden objects increased when the visible objects formed a line across the occluder and decreased when the visible objects formed a line outside of the occluder. Confidence ratings for numerosity estimation were similar for fully visible and partially occluded surfaces. These results suggest that perceptual inferences about what is hidden in our environment can be very inaccurate und underestimate the complexity of the environment.  相似文献   
5.
In this article, we examine the influence of scene articulation on transparent layer constancy. We argue that the term articulation may be understood as an aspect of the more general concept naturalness of a stimulus that relates to the degree of enrichment compared with a minimal stimulus and to the extent to which a stimulus contains regularities that are typically found in natural scenes. We conducted two matching experiments, in which we used strongly reduced scenes and operationalized articulation by the number of background reflectances (numerosity). The results of the first experiment show that higher numerosity actually leads to an increase in transparent layer constancy when reflectances are randomly drawn from a fixed population. However, this advantage disappears if the spatial mean and the variation of the subset colors are controlled as in our second experiment. Furthermore, our results suggest that the mechanism underlying transparent layer constancy leads to a rather stable compromise between two matching criteria, namely, proximal identity and constant filter properties according to our perceptual model. For filters with an additive component, which appear more or less hazy, we observed improved recovered filter properties and correspondingly higher degrees of transparent layer constancy, suggesting an additional mechanism in this type of filter.  相似文献   
6.
Dyscalculia, like dyslexia, affects some 5% of school-age children but has received much less investigative attention. In two thirds of affected children, dyscalculia is associated with another developmental disorder like dyslexia, attention-deficit disorder, anxiety disorder, visual and spatial disorder, or cultural deprivation. Infants, primates, some birds, and other animals are born with the innate ability, called subitizing, to tell at a glance whether small sets of scattered dots or other items differ by one or more item. This nonverbal approximate number system extends mostly to single digit sets as visual discrimination drops logarithmically to “many” with increasing numerosity (size effect) and crowding (distance effect). Preschoolers need several years and specific teaching to learn verbal names and visual symbols for numbers and school agers to understand their cardinality and ordinality and the invariance of their sequence (arithmetic number line) that enables calculation. This arithmetic linear line differs drastically from the nonlinear approximate number system mental number line that parallels the individual number-tuned neurons in the intraparietal sulcus in monkeys and overlying scalp distribution of discrete functional magnetic resonance imaging activations by number tasks in man. Calculation is a complex skill that activates both visual and spatial and visual and verbal networks. It is less strongly left lateralized than language, with approximate number system activation somewhat more right sided and exact number and arithmetic activation more left sided. Maturation and increasing number skill decrease associated widespread non-numerical brain activations that persist in some individuals with dyscalculia, which has no single, universal neurological cause or underlying mechanism in all affected individuals.  相似文献   
7.
Quantities can be represented using either mathematical language (i.e., numbers) or natural language (i.e., quantifiers). Previous studies have shown that numerical processing elicits greater activation in the brain regions around the intraparietal sulcus (IPS) relative to other semantic processes. However, little research has been conducted to investigate whether the IPS is also critical for the semantic processing of quantifiers in natural language. In this study, 20 adults were scanned with functional magnetic resonance imaging while they performed semantic distance judgment involving six types of materials (i.e., frequency adverbs, quantity pronouns and nouns, animal names, Arabic digits, number words, and dot arrays). Conjunction analyses of brain activation showed that numbers and dot arrays elicited greater activation in the right IPS than did words (i.e., animal names) or quantifiers (i.e., frequency adverbs and quantity pronouns and nouns). Quantifiers elicited more activation in left middle temporal gyrus and inferior frontal gyrus than did numbers and dot arrays. No differences were found between quantifiers and animal names. These findings suggest that, although quantity processing for numbers and dot arrays typically relies on the right IPS region, quantity processing for quantifiers typically relies on brain regions for general semantic processing. Thus, the IPS does not appear to be the only brain region for quantity processing. Hum Brain Mapp 35:444–454, 2014. © 2012 Wiley Periodicals, Inc.  相似文献   
8.
Connecting pairs of items causes robust underestimation of the numerosity of an ensemble, presumably by invoking grouping mechanisms. Here we asked whether this underestimation in numerosity judgments could be revealed and further explored by continuous tracking, a newly developed technique that allows for fast and efficient data acquisition and monitors the dynamics of the responses. Participants continuously reproduced the perceived numerosity of a cloud of dots by moving a cursor along a number line, while the number of dots and the proportion connected by lines varied over time following two independent random walks. The technique was robust and efficient, and correlated well with results obtained with a standard psychophysics task. Connecting objects with lines caused an underestimation of approximately 15% during tracking, agreeing with previous studies. The response to the lines was slower than the response to the physical numerosity, with a delay of approximately 150 ms, suggesting that this extra time is necessary for processing the grouping effect.  相似文献   
9.
We studied visual numerosity judgments for linear dot arrays with regular spacing under central and off-axis observation conditions. Results indicate that an appropriate increase in stimulus size, as determined by the human cortical magnification factor, may compensate for the retinal inhomogeneity of numerosity judgments. Such a compensation, however, is no longer possible if in the numerosity judgments observers are deprived of the cue of overall dot-array length. Thus, there are aspects of the relative insensitivity of peripheral visual function that are not captured by purely geometrical considerations of the retino-cortical projection.  相似文献   
10.
ABSTRACT

We describe the performance of an aphasic individual, K.A., who showed a selective impairment affecting his ability to perceive spoken language, while largely sparing his ability to perceive written language and to produce spoken language. His spoken perception impairment left him unable to distinguish words or nonwords that differed on a single phoneme and he was no better than chance at auditory lexical decision or single spoken word and single picture matching with phonological foils. Strikingly, despite this profound impairment, K.A. showed a selective sparing in his ability to perceive number words, which he was able to repeat and comprehend largely without error. This case adds to a growing literature demonstrating modality-specific dissociations between number word and non-number word processing. Because of the locus of K.A.’s speech perception deficit for non-number words, we argue that this distinction between number word and non-number word processing arises at a sublexical level of representations in speech perception, in a parallel fashion to what has previously been argued for in the organization of the sublexical level of representation for speech production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号