首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   0篇
  国内免费   4篇
耳鼻咽喉   2篇
儿科学   2篇
基础医学   42篇
内科学   3篇
神经病学   71篇
特种医学   1篇
外科学   5篇
综合类   6篇
预防医学   2篇
眼科学   3篇
药学   5篇
  2013年   3篇
  2011年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   6篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   10篇
  1997年   15篇
  1996年   19篇
  1995年   15篇
  1994年   13篇
  1993年   6篇
  1992年   6篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   4篇
排序方式: 共有142条查询结果,搜索用时 31 毫秒
1.
Administration of cholinotoxin etylcholine aziridinium (AF64A) into the brain selectively induces nonrever-sible cholinergic deficit. Wistar rats were injected intracerebroventricularly bilaterally with AF64A at doses of 1–3 nmol/ventricle. 28 days later the number of neurons survived was counted in dorsolateral, intermediate and medial groups of cells of the medial septum. AF64A induced a decrease in neuronal density and expression of cholineacetyl transferase at all doses used as well as in all regions studied. Brain sections were also stained for NADPH-diaphorase representing neuronal NO-synthase. Effects of AF64A on NADPH-diaphorase expression depended on the region studied. The number of NADPH-diaphorase-positive cells increased in the medial cellular group where more cholineacetly transferase-positive cells survived. In contrast, decrease in NADPH-diaphorase expression in the dorsolateral group of cells coincided with low level of cholineacetyltransferase-po-sitive neurons. The data presented suggest that in the AF64A-dependent model of neurodegeneration NO may play a neuroprotective function.  相似文献   
2.
Summary The distribution of the enzyme nitric oxide synthase (NOS) was investigated at the ultrastructural level in synaptic structures of the hippocampal formation in relation to long-term potentiation (LTP), based on the histochemical NADPH-diaphorase (NADPH-d) staining with the tetrazolium salt BSPT. BSPT-formazan, the osmiophilic reaction product, was found to be selectively distributed and predominantly attached to membranes of the endoplasmic reticulum. In synaptic regions mainly the presynaptic sides showed labeling. Although several groups have demonstrated a principal involvement of NO in the LTP-mechanism, we found only a low, statistically insignificant increase in NADPH-d stained presynaptic areas of the dentate gyrus, where LTP was evoked. Postsynaptic elements also did not show any noticeable differences. Based on the present results, the predominantly presynaptic localization of NOS should be preferably considered in models describing a functional role of NO in LTP formation, despite the fact that we failed to reveal any indications for an LTP-related change in synaptically located NADPH-d.  相似文献   
3.
ThedynamicdistributionofnitricoxidesynthaseinthesmallintestineofmicewithintestinalradiationsicknessWeiLichun(魏丽春);GuoYao(郭鹞)(...  相似文献   
4.
Nitric oxide and estrogen have been shown to play a critical role in the control of female reproductive function. In order to determine an anatomical relationship between nitric oxide generating neurons and estrogen target neurons, NADPH-diaphorase histochemistry was combined with estrogen receptor immunohistochemistry in the female medial preoptic area. While only a few weakly stained neurons for NADPH-diaphorase were found in ovariectomized control rats, a drastic increase in NADPH-diaphorase activity was observed in the medial preoptic nucleus of estradiol-treated ovariectomized animals. The total number of NADPH-diaphorase neurons in the estradiol-treated group increased three-fold relative to controls, and more than 80% of those neurons contained estrogen receptor-immunoreactivity in their nuclei. Since neuronal NADPH-diaphorase is nitric oxide synthase, the present result suggests that nitric oxide synthase activity can be positively regulated by estradiol in neurons containing estrogen receptor in the female medial preoptic nucleus.  相似文献   
5.
Adaptation of the skin colour to the background light condition in the amphibian Xenopus laevis is achieved by migration of pigment granules in the skin melanophores, a process regulated by α-MSH secretion from melanotrope cells in the pituitary pars intermedia (PI). α-MSH secretion in turn, is regulated by various stimulatory and inhibitory messengers synthesized in brain nuclei, especially the hypothalamic suprachiasmatic and magnocellular nuclei and the locus coeruleus in the hindbrain.In the present study, the roles in background adaptation of nitric oxide (NO) and NO synthase (NOS) enzyme activity were evaluated. In situ, using both immunohistochemistry with anti-human brain NOS (bNOS) serum in paraffin-embedded material and using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry in cryo-sections, we showed NOS in neurons in the optic tectum and in the locus coeruleus. NADPH-d reactivity was also found in neurons in the lateral amygdala, the ventral hypothalamic nucleus and in fibers in the median eminence. Using a Western blot stained with an anti-human bNOS serum, we demonstrated a 150 kDa band in Xenopus hindbrain lysates, which is similar to the NOS protein present in the rat anterior pituitary, but which was not detectable in the lysates from both the neurointermediate and distal lobes in Xenopus. No differences in histochemical staining pattern or on Western blotting were observed between animals adapted to a black or a white background.Paraffin sections of the endocrine PI and pars distalis did not reveal bNOS-like immunoreactivity. NADPH-d reactivity was observed in the endothelia of this gland. However, using a new procedure of thin cryo-sections of pituitary neurointermediate lobes, we observed bNOS-immunoreactive fibers as well as cyclic 3′,5′ guanosine monophosphate (cGMP)-accumulating fibers in the PI.The PI may be regulated by NOergic neurons from higher brain centers. The possibility that NOergic neurons in the locus coeruleus are involved in the innervation of the PI needs further investigation. The latter neurons are probably not noradrenergic because double labeling studies show no co-localization of NADPH-d reactivity and tyrosine hydroxylase immunoreactivity in locus coeruleus neurons.  相似文献   
6.
Localization patterns of NADPH-diaphorase-positive neurons in the pheasant ileum were investigated using an enzyme histochemical method. NADPH-diaphorase activity in the pheasant ileum was demonstrated in neuronal cells bodies and nerve fibres. The NADPH-diaphorase-positive nerve cells showed a polygonal shape and were present solitary or arranged in groups in the submucosal and muscular layers. Nerve fibres penetrated the wall of the ileum at its serosal surface, frequently in the vicinity of ileal arterial branches. They were abundantly present in muscular and submucosal layers of the ileum forming thicker nerves. Some nerve fibres traversed the submucosa into the lamina propria mucosae to form dense nerve plexuses. Fine nerve fibres were found to penetrate into intestinal villi encompassing the crypts underneath the epithelium. We conclude that the pheasant ileum is characterized by abundance of NADPH-diaphorase-positive nerve structures which may play a significant functional role in the small intestine of the pheasant.  相似文献   
7.
Summary We have studied the laminar distribution of reduced nicotinamide dinucleotide phosphate diaphorase (NADPH-d) activity and the morphology of positive neurons in the superior colliculus (SC) and the underlying periaqueductal gray (PAG) of the rat. The morphology of NADPH-d-positive neurons has been compared to that of Golgi-impregnated cells. The highest activity occurs in the stratum zonale and stratum griseum superficiale, contrasting with the pale neuropil in the stratum opticum, where only a few positive neurons are found. In the stratum griseum intermedium positive neurons are grouped in patches separated by narrow, NADPH-d-negative bands. In the deeper layers, the neuropil is NADPH-d-negative, and few neurons show enzymatic activity. In contrast, numerous neurons in the dorsolateral part of the PAG are intensely positive. They are continuous with the positive neurons in the stratum album profundum, with no clear border between the two centers. In both SC and PAG, only small and medium sized neurons are NADPH-d-positive. In comparison with Golgi material, all types of small neurons in the superficial layers show NADPH-d activity; NADPH-d histochemistry, however, does not visualize the characteristic dendritic appendages of these neurons. The large neurons of the SC and PAG, probably representing the long-projecting neurons of these centers, do not contain the enzyme.  相似文献   
8.
Previous observations have shown that the striatum contains a population of neurones that display immunoreactivity for calretinin. In order to morphologically characterize these neurones, sections of the rat striatum were immunostained to reveal calretinin and examined at both light and electron microscopic levels. The striatum contained a small population of calretinin-immunoreactive neurones, which were of medium-size (9–17 μm) and possessed few aspiny, infrequently branching dendrites which tapered to become very thin processes in their most distal portions. Although the calretinin-immunoreactive neurones were homogeneously distributed in the frontal plane, there was a marked rostrocaudal gradient with a much greater density of cells in the rostral than in the caudal parts of the striatum. At the ultrastructural level, calretinin-immunoreactive neurones were seen to possess an indented nucleus and to receive synaptic input from at least three types of boutons. In addition to the calretinin-immunoreactive neurones, the striatum also contained axons and terminal boutons that displayed immunoreactivity for calretinin. At least two types of immunoreactive terminals were identified, those forming symmetrical synaptic specialisations and those forming asymmetrical synaptic specialisations. Approximately 50% formed asymmetrical contacts with spines and 30% formed symmetrical synaptic contact with dendritic shafts. In an attempt to further chemically characterize the calretinin-containing neurones, double pre-embedding immunocytochemistry for calretinin and parvalbumin or choline acetyltransferase was carried out and calretinin immunocytochemistry was combined with histochemistry for NADPH-diaphorase. Analysis of these double-stained sections revealed that the population of calretinin-immunoreactive neurones was distinct from the populations of neurones containing parvalbumin, choline acetyltransferase or NADPH-diaphorase. It is concluded that: (1) on the basis of distribution, morphology, chemistry, ultrastructure and afferent synaptic input, the calretinin-immunoreactive neurones are distinct from the major classes of neurones that have been previously recognised in the striatum; (2) calretinin-immunoreactive terminals are heterogeneous and are probably derived from local calretinin-containing neurones and possibly other sources.  相似文献   
9.
The topographical distribution, histochemical characteristics, and anatomical relationships of the cellular elements containing choline acetyltransferase (ChAT) immunoreactivity, demonstrated with specific monoclonal antibodies to ChAT following the unlabelled antibody peroxidase-antiperoxidase (PAP) procedure at the optical and electron microscopic levels, were investigated in the rat substantia nigra (SN). Scarce, large (20-30 microns in maximum soma extent) cholinergic cell bodies and processes were found within the boundaries of the SN, in the borders of the pars compacta and pars reticulata, principally at caudal levels. Occasionally, cholinergic neurons were also found at intermediate levels of the SN, in the borders of the pars reticulata and pars lateralis. Cytologically, these large cells resembled ChAT-positive neurons localized in other areas of the central nervous system (CNS) of the rat--for example, the pontomesencephalotegmental (PMT) cholinergic complex (Ch5-Ch6) and the nucleus basalis of Meynert (nbM) (Ch4). Histochemically, ChAT-positive cells in the SN were characterized by their ability to utilize the reduced cofactor nicotinamide adenine dinucleotide phosphate (NADPH). Identified ChAT-positive neurons in the light microscope were subsequently studied in the electron microscope. All cholinergic neurons in the SN share essentially the same ultrastructural characteristics. The copious cytoplasm was rich in organelles with large lipofuscin granules. The synaptic input onto cell bodies and their dendrites was studied in serial sections. Synaptic contacts onto the perikarya and proximal dendrites were sparse and of asymmetric type. Both symmetric and asymmetric synaptic specializations onto ChAT-positive distal dendrites were detected. Asymmetric synaptic contacts onto cell bodies and dendrites were often defined by the presence of subjunctional dense bodies associated with the postsynaptic membrane. The pattern of the synaptic input to these cells differs strikingly from that onto unlabelled neighboring neurons. The perikarya and dendrites of the latter were characteristically covered with synaptic boutons. Scarce immunoreactive terminals in asymmetric synaptic contact with unlabelled dendritic profiles were also detected in portions of SN compacta with no ChAT-positive cells. Extranigrally located ChAT-positive cells of the PMT cholinergic complex were also examined in the electron microscope for comparison purposes. These cells exhibited, on the basis of their morphology and synaptic input pattern, very similar characteristics to those shown by SN cholinergic neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
10.
Nitrergic nerve fibres of intrinsic and extrinsic origin constitute an important component of the autonomic innervation in the human eye. The intrinsic source of nitrergic nerves are the ganglion cells in choroid and ciliary muscle. In order to obtain more information on the origin of extrinsic nitrergic nerves in the human eye, we obtained superior cervical, ciliary, pterygopalatine and trigeminal ganglia from six human donors, and stained them for neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-D). In the superior cervical ganglia, nNOS/NADPH-D-positive varicose axons were observed whereas perikarya were consistently negative. Fewer than 1% of perikarya in the ciliary ganglia were labelled for nNOS/NADPH-D. The diameter of nNOS/NADPH-D-positive ciliary perikarya was between 8 and 10 microm, which was markedly smaller than the diameter of the vast majority of negative perikarya in the ciliary ganglion. More than 70% of perikarya in the pterygopalatine ganglia were intensely labelled for both nNOS and NADPH-D. In trigeminal ganglia, 18% of perikarya were nNOS/NADPH-D-positive. The average diameter of trigeminal nNOS/NADPH-D perikarya was between 25 and 45 microm. Pterygopalatine and trigeminal ganglia are the most likely sources for extrinsic nerve fibres to the human eye.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号