首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
基础医学   1篇
内科学   2篇
外科学   1篇
预防医学   9篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
排序方式: 共有13条查询结果,搜索用时 46 毫秒
1.
《Vaccine》2018,36(23):3191-3194
‘National foot-and-mouth disease (FMD) control programme’ is being implemented in India and therefore predicting vaccine match is a key surveillance task. Recently, a considerable proportion of field viruses (75.6%) showed antigenic drift from the existing serotype A vaccine strain A IND 40/2000 necessitating search for an alternate strain. Here, antigenic relationship (‘r1’ value) of 87 field viruses with each of the 8 candidate strains was estimated by virus neutralization test. A IND 27/2011 strain emerged to be the one with the widest spectrum of antigenic coverage showing ‘r1’ value of more than 0.3 with 81.6% of field strains. It achieved a reasonably high titre of log10 7.5 TCID50/ml in BHK-21 suspension cell which was accompanied by positive charge gaining substitutions (E82–K and E131–K in VP2) thought to have adaptive significance. However, potency trial remains to be conducted before A IND 27/2011 finds a place in the vaccine formulation.  相似文献   
2.
Rift valley fever (RVF) is a vector‐borne viral disease of domestic ruminants, camels and man, characterized by widespread abortions and neonatal deaths in animals, and flu‐like symptoms, which can progress to hepatitis and encephalitis in humans. The disease is endemic in Africa, Saudi Arabia and Yemen, and outbreaks occur after periods of high rainfall, or in environments supporting the proliferation of RVF virus (RVFV)‐infected mosquito vectors. The domestic and wild animal maintenance hosts of RVFV, which may serve as sources of virus during inter‐epidemic periods (IEPs) and contribute to occurrence of sporadic outbreaks, remain unknown, although reports indicate that the African buffalo (Syncerus caffer) may play a role. Due to the close proximity of the habitats of domestic pigs and warthogs to those of known domestic and wild ruminant RVFV maintenance hosts respectively, our study investigated their possible role in the epidemiology of RVF in South Africa by evaluating RVFV exposure and seroconversion in suids. A total of 107 warthog and 3,984 domestic pig sera from 2 and all 9 provinces of South Africa, respectively, were screened for presence of RVFV neutralizing antibodies using the virus neutralization test (VNT). Sero‐positivity rates of 1.87% (95% CI: 0.01%–6.9%) and 0.68% (95% CI: 0.49%–1.04%) were observed for warthogs and domestic pigs, respectively, but true prevalence rates, taking test sensitivity and specificity into account, were lower for both groups. There was a strong association between the results of the two groups (χ2 = 0.75, p = .38), and differences in prevalence between the epidemic and IEPs were non‐significant for all suid samples tested (p > .05). This study, which provides the first evidence of probable exposure and infection of South African domestic pigs and warthogs to RVFV, indicates that further investigations are warranted, to fully clarify the role of suids in the epidemiology of RVF.  相似文献   
3.
Nelson G  Marconi P  Periolo O  La Torre J  Alvarez MA 《Vaccine》2012,30(30):4499-4504
The bovine viral diarrhea virus (BVDV) is the etiological agent responsible for a wide spectrum of clinical diseases in cattle. The glycoprotein E2 is the major envelope protein of this virus and the strongest inductor of the immune response. There are several available commercial vaccines against bovine viral diarrhea (BVD), which show irregular performances. Here, we report the use of tobacco plants as an alternative productive platform for the expression of the truncated version of E2 glycoprotein (tE2) from the BVDV. The tE2 sequence, lacking the transmembrane domain, was cloned into the pK7WG2 Agrobacterium binary vector. The construct also carried the 2S2 Arabidopsis thaliana signal for directing the protein into the plant secretory pathway, the Kozak sequence, an hexa-histidine tag to facilitate protein purification and the KDEL endoplasmic reticulum retention signal. The resulting plasmid (pK-2S2-tE2-His-KDEL) was introduced into Agrobacterium tumefaciens strain EHA101 by electroporation. The transformed A. tumefaciens was then used to express tE2 in leaves of Nicotiana tabacum plants. Western blot and ELISA using specific monoclonal antibodies confirmed the presence of the recombinant tE2 protein in plant extracts. An estimated amount of 20 μg of tE2 per gram of fresh leaves was regularly obtained with this plant system. Injection of guinea pigs with plant extracts containing 20 μg of rtE2 induced the production of BVDV specific antibodies at equal or higher levels than those induced by whole virus vaccines. This is the first report of the production of an immunocompetent tE2 in N. tabacum plants, having the advantage to be free of any eventual animal contaminant.  相似文献   
4.
5.
《Vaccine》2015,33(5):670-677
BackgroundFoot-and-mouth disease (FMD) vaccines applied for prophylactic use in endemic areas provide short-lived immunity requiring regular boosters. Indian FMD control program recommends twice a year vaccination. Development of high potency vaccines that provide better immune response can singificantly contribute to control programme by reducing the frequency of vaccination. The present study explores new adjuvants to enhance the protective efficacy of inactivated trivalent FMD vaccines.Methodology and principal findingsVacciMax® is a novel adjuvant which uses a liposome-based oil emulsion platform. Cattle were immunized using VacciMax-A and VacciMax-B FMD vaccines and evaluated for protective efficacy. Similar groups of animals were also boosted after 6 months to study the effect of booster immunisation on protection against homologous challenge. Serum samples from immunized animals were tested by virus neutralization test (VNT) and liquid phase blocking ELISA (LPBE). After challenge, animals were screened for virus load by real-time PCR and reactivity in non-structural protein (3ABC) antibody detection ELISA to corroborate the protection data. A single dose of VacciMax-A formulation elicited higher percentage protection (63%) in VacciMax-A compared to 25% in VacciMax-B upon challenge at one-year post-vaccination. Upon boosting at 6 months also, VacciMax-A group showed higher levels of protection (100%) compared to VacciMax-B (86%), even though both the groups elicited comparable VNT titre (p = 0.4964). The results also demonstrated that intramuscular route was preferrable over subcutaneous route of administration.ConclusionThe study demonstrates that immunization with VacciMax-A-IM adjuvanted FMD vaccine with high antigen payload under boosting regimen could effectively be used as potent vaccine to maintain herd immunity.  相似文献   
6.
《Vaccine》2019,37(42):6221-6231
Foot-and-mouth disease (FMD) is a highly contagious viral infection of cloven hooved animals that continues to cause economic disruption in both endemic countries or when introduced into a formally FMD free country. Vaccines that protect against clinical disease and virus shedding are critical to control FMD. The replication deficient human adenovirus serotype 5 (Ad5) vaccine vector expressing empty FMD virus (FMDV) capsid, AdtFMD, is a promising new vaccine platform. With no shedding or spreading of viral vector detected in field trials, this vaccine is very safe to manufacture, as there is no requirement for high containment faciitites. Here, we describe three studies assessing the proportion of animals protected from clinical vesicular disease (foot lesions) following live-FMDV challenge by intradermolingual inoculation at 6 or 9 months following a single vaccination with the commercial AdtFMD vaccine, provisionally licensed for cattle in the United States. Further, we tested the effect of vaccination route (transdermal, intramuscular, subcutaneous) on clinical outcome and humoral immunity. Results demonstrate that a single dose vaccination in cattle with the commercial vaccine vector expressing capsid proteins of the FMDV strain A24 Cruzeiro (Adt.A24), induced protection against clinical FMD at 6 months (100% transdermal, 80% intramuscular, and 60% subcutaneous) that waned by 9 months post-vaccination (33% transdermal and 20% intramuscular). Post-vaccination serum from immunized cattle (all studies) generally contained FMDV specific neutralizing antibodies by day 14. Anti-FMDV antibody secreting cells are detected in peripheral blood early following vaccination, but are absent after 28 days post-vaccination. Thus, the decay in antibody mediated immunity over time is likely a function of FMDV-specific antibody half-life. These data reveal the short time span of anti-FMDV antibody secreting cells (ASCs) and important performance characteristics of needle-free vaccination with a recombinant vectored subunit vaccine for FMDV.  相似文献   
7.
《Vaccine》2019,37(35):5025-5034
Foot-and-mouth-disease (FMD) is a highly contagious transboundary animal disease that has negative consequences on regional and international trade. Vaccination is an important approach for FMD control and an essential consideration is the degree of cross-protection conferred by the vaccine against currently circulating field viruses. The objective of this study was to evaluate a new vaccine matching technique that does not require knowledge concerning the homologous vaccine virus. As a proof of concept, the vaccine-match was assessed for 41 FMD field viruses isolated from southern Africa over a 25-year period.A diverse group of 20 SAT1 and 21 SAT2 FMDV isolates collected from cattle and wildlife during 1991–2015 were selected for this study. Virus neutralization tests were performed against two sets of pooled sera for each serotype: vaccinated cattle sera (4–16 weeks post-vaccination) and convalescent cattle sera (3 weeks post-experimental challenge). Novel r1-values were calculated as the ratio of the titre of the vaccinated sera to the titre for convalescent cattle sera. A validation r1-value was calculated based on an assumption concerning the true homologous vaccine virus. There was a strong positive correlation between r1-values for the novel and the validation methods for SAT1 viruses (Spearman’s rho = 0.84, P < 0.01) and a very strong correlation for SAT2 viruses (Spearman’s rho = 0.90, P < 0.01). In addition, there was moderate to good agreement between the novel and validation methods for both serotypes based on a r1-value cut-off of 0.3, which is presumed to represent a good vaccine-match. The agreement between methods using prevalence-adjusted and bias-adjusted kappa (PABAK) was 0.67 and 0.84 for SAT1 and SAT2 viruses, respectively.The new r1-value method provides a feasible, alternative vaccine matching approach that could benefit FMD control in southern Africa.  相似文献   
8.
To determine whether Pteropine orthoreovirus (PRV) exposure has occurred in Singapore, we tested 856 individuals from an existing serum panel collected from 2005-2013. After an initial screen with luciferase immunoprecipitation system and secondary confirmation with virus neutralization test, we identified at least seven individuals with specific antibodies against PRV in both assays. Our findings confirm that PRV spillover into human populations is relatively common in this region of the world.  相似文献   
9.
《Vaccine》2018,36(48):7345-7352
We investigated the serotype- and topotype versatility of a replication-deficient human adenovirus serotype 5 vectored foot-and-mouth disease (FMD) vaccine platform (AdtFMD). Sixteen AdtFMD recombinant subunit monovalent vaccines targeting twelve distinct FMD virus (FMDV) serotype/topotypes in FMD Regional Pools I-VII were constructed. The AdtA24 serotype conditionally licensed vaccine served as the basis for vaccine design and target dose for cattle clinical trials. Several vaccines contained an additional RGD motif genetic insertion in the adenovector fiber knob, and/or a full-length 2B gene insertion in the FMDV P1 gene cassette. In 13 of the 22 efficacy studies conducted, naïve control and AdtFMD vaccinated cattle were challenged intradermolingually at 2 weeks post-vaccination using a FMDV strain homologous to the AdtFMD vaccine strain. Each of the 16 AdtFMD vaccines were immunogenic based on the presence of homologous neutralizing antibodies in the serum of approximately 90% of total vaccinates (n = 375) on the day of challenge. Importantly, for 75% of vaccines tested, the effective dose that conferred 100% protection against clinical FMD was identical to or in some cases lower than, the minimum protective dose for the conditionally licensed AdtA24 vaccine formulated with ENABL® adjuvant. Results also confirmed the capability of the AdtFMD vaccine platform to differentiate infected from vaccinated animals (DIVA) across the five FMDV serotypes evaluated. Collectively, this comprehensive set of FMD cattle vaccine dose ranging studies highlights the serotype- and topotype versatility of the AdtFMD vaccine platform for further development, licensure, and application in FMD outbreak control and disease eradication efforts.  相似文献   
10.

Background

Foot-and-mouth disease (FMD) vaccine potency testing involves hundreds of animals each year. Despite considerable efforts during the past decades, a challenge-free alternative vaccine potency test to replace the European protective dose 50% test (PD50) has not been implemented yet. The aim of the present study was to further characterize the properties of serological vaccine potency models.

Methods

Logistic regression models were built for 5 serological assays from 3 different laboratories. The serum samples originated from 5 repeated PD50 vaccine potency trials with a highly potent A/IRN/11/96 vaccine. Receiver Operating Characteristic analysis was used to determine a serological pass mark for predicting in vivo protected animals. Subsequently, an estimated PD50 was calculated and the serotype dependency of the logistic models was investigated.

Results

Although differences were observed between the laboratories and the serological assays used, the logistic models accurately predicted the in vivo protection status of the animals in 74–93% of the cases and the antibody pass levels corresponded to 84–97% of protection, depending on the serological assay used. For logistic models that combine different serotypes, the model fit can be increased by inclusion of a serotype factor in the logistic regression function.

Conclusions

The in vitro estimated PD50 method may be at least as precise as the in vivo PD50 test and may accurately predict the PD50 content of a vaccine. However, the laboratory-effect and the serotype-dependency should be further investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号