首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
基础医学   3篇
临床医学   3篇
内科学   1篇
特种医学   1篇
预防医学   2篇
药学   7篇
  2022年   2篇
  2021年   1篇
  2015年   4篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有17条查询结果,搜索用时 234 毫秒
1.
The aim of this study was to evaluate the toxicological profile of biosurfactant encapsulated polymeric nanoparticles of Polylactic acid-Polyethylene glycol (PLA-PEG) in mice. Hematological, biochemical and histopathological samples of rodents were evaluated. Mice were selected randomly and divided into 3 treatment groups and one control group. Group I mice served as a control group, Group II were administrated with biosurfactant, Group III were treated with Polymeric nanoparticles of PLA-PEG. Group IV mice were injected with biosurfactant loaded polymeric nanoparticles of PLA-PEG. The formulations were administered intravenously via tail vein with 20 μg/mL dose concentration of biosurfactant. The normal control group was injected with only PBS. Blood samples were collected on 7th, 14th and 21st day and hematological and biochemical assays were performed. After the blood collection, mice were sacrificed for histopathological examination. The results showed that there were no significant difference in hematology parameter between the control and treated group. Some minute, non-significant changes were found in biochemical parameters which were not considered. Histopathological result of selected vital organs revealed that the biosurfactant and/or PLA-PEG polymeric nanoparticles can be considered as safe as no toxicological features were observed in histopathology of tissues. Hence, it can be deliberated that the biosurfactant encapsulated in PLA-PEG copolymeric nanoparticles are non toxic and can provide a safe, suitable platform for biomedical applications in future.  相似文献   
2.
Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA) to target TFO delivery to hepatic stellate cells (HSCs) for treating liver fibrosis. These approaches however are rendered less effective owing to a lack of targeted delivery, as seen with lipid-conjugates, and the potential immune reactions due to repeated dosing with high molecular weight BSA conjugated TFO. In this review, we discuss our latest efforts to enhance the effectiveness of TFO for treating liver fibrosis. We have shown that conjugation of TFOs to M6P-HPMA can enhance TFO delivery to HSCs and has the potential to treat liver fibrosis by inhibiting collagen synthesis. This TFO conjugate shows negligible immunogenicity owing to the use of HPMA, one of the least immunogenic copolymers, thereby making it a suitable and more effective candidate for antifibrotic therapy.  相似文献   
3.
We aimed to develop and characterize poly n-butylcyanoacrylate (PBCA) microbubbles (MBs) with a narrow size distribution. MBs were synthesized by established emulsion polymerization techniques, size-isolated by centrifugation and functionalized for molecular imaging by coating their surface with streptavidin. The physical and acoustic properties of the parent solution, different-size isolated populations and functionalized MBs were measured and compared. As expected from negative zeta potentials at pH 7, cryo scanning electron microscopy showed no aggregates. In phantoms MBs were destructible at high mechanical indices and showed a frequency-dependent attenuation and backscattering. The MBs were stable in solution for more than 14 weeks and could be lyophilized without major damage. However, for injection, small needle diameters and high injection rates are shown to be critical because both lead to MB destruction. In summary, when being handled correctly, size-isolated PBCA MBs are promising candidates for preclinical functional and molecular ultrasound imaging.  相似文献   
4.
Growth factors represent highly potent and highly efficacious means of communication to cells. At the same time, these proteins are fragile and relatively small sized – rendering their immobilization and controlled release from biomaterials challenging. In this work, we establish a method to incorporate growth factors into the physical hydrogels based on poly(vinyl alcohol), PVA. The latter have a long and successful history of biomedical applications and approval for diverse use in human patients, but are also characterized with scant opportunities for bioconjugation and functionalization. Herein, we develop the conjugation of growth factors to the micro-structured, spontaneously eroding physical hydrogels based on PVA. Protein conjugation was elaborated using model substrates, albumin and lysozyme, which aided to reveal specificity of chemical reactions and benign, non-harmful nature of the established protocols. Surface-adhered format of hydrogel analyses allowed to quantify bioconjugation reactions and enzymatic activity of the immobilized proteins and to visualize the hydrogels with immobilized cargo. In cell culture, immobilized growth factors were effective in communicating to adhering cells and specifically enhanced proliferation rates of the cells containing the corresponding receptors. At the same time, proliferation of the cells devoid of these receptors was un-altered.  相似文献   
5.
In addition to vaccines, noninfectious virus-like particles (VLPs) that mimic the viral capsid show an attractive possibility of presenting immunogenic epitopes or targeting molecules on their surface. Here, functionalization of norovirus-derived VLPs by simple non-covalent conjugation of various molecules is shown. By using the affinity between a surface-exposed polyhistidine-tag and multivalent tris-nitrilotriacetic acid (trisNTA), fluorescent dye molecules and streptavidin–biotin conjugated to trisNTA are displayed on the VLPs to demonstrate the use of these VLPs as easily modifiable nanocarriers as well as a versatile vaccine platform. The VLPs are able to enter and deliver surface-displayed fluorescent dye into HEK293T cells via a surface-attached cell internalization peptide (VSV-G). The ease of manufacturing, the robust structure of these VLPs, and the straightforward conjugation provide a technology, which can be adapted to various applications in biomedicine.  相似文献   
6.
Click reactions have the potential to greatly facilitate the development of drug delivery systems and biomaterials. These reactions proceed under mild conditions, give high yields, and form only inoffensive by-products. The Diels–Alder cycloaddition is one of the click reactions that do not require any metal catalyst; it is one of the most useful reactions in synthetic organic chemistry and material design. Herein, we highlight possible applications of the Diels–Alder reaction in pharmaceutics and biomedical engineering. Particular focus is placed on the synthesis of polymers and dendrimers for drug delivery, the preparation of functionalized surfaces, bioconjugation techniques, and applications of the Diels–Alder reaction in nanotechnology. Moreover, applications of the reaction for the preparation of hydrogels for drug delivery and tissue engineering are reviewed. A general introduction to the Diels–Alder reaction is presented, along with a discussion of potential pitfalls and challenges. At the end of the article, we provide a set of tools that may facilitate the application of the Diels–Alder reaction to solve important pharmaceutical or biomedical problems.  相似文献   
7.
8.
Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents that have been developed for magnetic resonance (MR) imaging. These MNPs have traditionally been used for disease imaging via passive targeting, but recent advances have opened the door to cellular-specific targeting, drug delivery, and multi-modal imaging by these nanoparticles. As more elaborate MNPs are envisioned, adherence to proper design criteria (e.g. size, coating, molecular functionalization) becomes even more essential. This review summarizes the design parameters that affect MNP performance in vivo, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers. A careful review of the chemistries used to modify the surfaces of MNPs is also given, with attention paid to optimizing the activity of bound ligands while maintaining favorable physicochemical properties.  相似文献   
9.
Controlled/'living' radical polymerization methods, including the versatile reversible addition-fragmentation chain transfer (RAFT) polymerization process, are rapidly moving to the forefront in construction of drug and gene delivery vehicles. The RAFT technique allows an unprecedented latitude in the synthesis of water soluble or amphiphilic architectures with precise dimensions and appropriate functionality for attachment and targeted delivery of diagnostic and therapeutic agents. This review focuses on the chemistry of the RAFT process and its potential for preparing well-defined block copolymers and conjugates capable of stimuli-responsive assembly and release of bioactive agents in the physiological environment. Recent examples of block copolymers with designed structures and segmental compositions responsive to changes in pH or temperature are reviewed and hurdles facing further development of these novel systems are discussed.  相似文献   
10.
IntroductionThe spontaneous copper-free tandem 1,3-dipolar cycloaddition–retro-Diels–Alder (tandem crDA) reaction between cyclic Arg-Gly-Asp-d-Phe-Orn(N3) [c(RGDfX)] and oxanorbornadiene-DTPA (o-DTPA) or methyloxanorbornadiene-DTPA (mo-DTPA) into two DTPA-c(RGDfX) regioisomers is characterized. Since there is no information on the stability and reaction rate of the tandem crDA reaction in biological media, we set out to characterize these reaction parameters.MethodsThe effects of concentration of the reactants, temperature, pH and reaction environment (serum, blood) on the kinetics of the reaction were determined using 111In-labeled oxanorbornadiene-DTPA analogs. The affinity of the radiolabeled conjugate was determined in a solid-phase αvβ3 integrin binding assay. Furthermore, the octanol–water partition coefficient was determined and, finally, the biodistribution of the labeled compounds in mice with subcutaneous αvβ3-expressing tumors was determined.ResultsFifty percent conversion was reached after 26 h. Kinetic experiments furthermore established that the reaction rate of the tandem crDA reaction follows temperature- and concentration-dependent second-order kinetics, but is independent of the pH of the medium. Affinity of the two [111In]DTPA-cRGDfX conjugates for αvβ3 integrin is 191 nM. Biodistribution studies showed specific (αvβ3-mediated) uptake of [111In]DTPA-c(RGDfX) in the tumor and in αvβ3-expressing tissues.ConclusionThe tandem crDA reaction using methyl-substituted oxanorbornadiene is a versatile method for a single-step ligation that proceeds independently of pH and also proceeds in serum and blood. Currently, we are further looking into enhancement of reaction kinetics and exploitation of tandem crDA in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号