首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   5篇
  国内免费   1篇
儿科学   1篇
妇产科学   4篇
基础医学   15篇
临床医学   4篇
内科学   20篇
皮肤病学   3篇
神经病学   19篇
外科学   6篇
综合类   5篇
预防医学   2篇
药学   25篇
中国医学   2篇
肿瘤学   5篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2016年   3篇
  2015年   1篇
  2014年   11篇
  2013年   13篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   9篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
1.
Summary This study examines the paracrine influence by human breast carcinoma cells (UISO-BCA-1) on nonmalignant breast tissuein vitro. The 17-OH-SDH-mediated reductive pathway (estroneestradiol) was significantly increased in nonmalignant breast tissue coincubated with human breast carcinoma cells, compared to control tissues incubated in the media alone. No influence on the enzyme activity was noticed in coincubated breast cancer cells. Preincubation of breast cancer cells with estradiol (10–8 M) significantly decreased the enzyme activity in coincubated nonmalignant breast tissue, which was restored to control levels by addition of R5020 (10–8 M), tamoxifen (10–6 M), or a combination of both. In nonmalignant tissues incubated in the presence of growth factor TGF, enzyme activity was reduced to between 46% and 76%. No other growth factors (IGF I, IGF II, PDGF) influenced enzyme activity. In nonmalignant tissues incubated with malignant tumor cytosol, enzyme activity was increased in 16% cases, inhibited in 21%, and not significantly changed in 63%.The data from the present study suggest that factors produced by breast carcinoma cells may influence interconversion of estradiol in nonmalignant tissue. In patients, factors produced by malignant tumor mass may have paracrine influence on surrounding nonmalignant breast tissue and, thereby, may influence the estrogen availability to tumor mass.  相似文献   
2.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an essential role in regulating the access of glucocorticoids to nuclear receptors. Chronically elevated levels of glucocorticoids cause obesity, diabetes, cardiovascular disease (the metabolic syndrome) and impairments in memory. Dysregulation of 11β-HSD1 has been implicated in all of these disease states. Studies with transgenic mice have demonstrated that overexpression of 11β-HSD1 in adipose tissue produces the metabolic syndrome, while knockout of the enzyme produces mice with a cardioprotective phenotype that resist cognitive decline with ageing. Studies with selective 11β-HSD1 inhibitors have demonstrated that it is possible to lower plasma glucose and triglyceride levels as well as food intake and the rate of body weight gain. Consequently, 11β-HSD1 is an important target for the treatment of the metabolic syndrome and cognitive impairment, with many companies pursuing the development of inhibitors. This patent review focuses on the large number of patents published since 2005.  相似文献   
3.
Prolactin (PRL) is a polypeptide hormone with a wide range of physiological functions, and is critical for female reproduction. PRL exerts its action by binding to membrane bound receptor isoforms broadly classified as the long form and the short form receptors. Both receptor isoforms are highly expressed in the ovary as well as in the uterus. Although signaling through the long form is believed to be more predominant, it remains unclear whether activation of this isoform alone is sufficient to support reproductive functions or whether both types of receptor are required. The generation of transgenic mice selectively expressing either the short or the long form of PRL receptor has provided insight into the differential signaling mechanisms and physiological functions of these receptors. This review describes the essential finding that both long and short receptor isoforms are crucial for ovarian functions and female fertility, and highlights novel mechanisms of action for these receptors.  相似文献   
4.
5.
The present study aimed to determine whether an i.c.v. administration of allopregnanolone (ALLO) rapidly modifies the hypothalamic and ovarian 3β‐hydroxysteroid dehydrogenase (3β‐HSD) enzymatic activity and gene expression in in vivo and ex vivo systems in pro‐oestrus (PE) and dioestrus I (DI) rats. Animals were injected with vehicle, ALLO, bicuculline or bicuculline plus ALLO and were then killed. In the in vivo experiment, the hypothalamus, ovaries and serum were extracted and analysed. In the ex vivo experiment, the superior mesenteric ganglion ‐ ovarian nerve plexus ‐ ovary system was extracted and incubated during 120 minutes at 37 ºC. The serum and ovarian compartment fluids were used to determine progesterone by radioimmunoanalysis. In the in vivo experiments, ALLO caused a decrease in hypothalamic and ovarian 3β‐HSD enzymatic activity during PE. During DI, ALLO increased hypothalamic and ovarian 3β‐HSD activity and gene expression. The ovarian 3β‐HSD activity increased in both stages in the ex vivo system; gene expression increased only during DI. ALLO induced an increase in serum progesterone only in D1 and in the ovarian incubation liquids in both stages. All findings were reversed by an injection of bicuculline before ALLO. Ovarian steroidogenic changes could be attributed to signals coming from ganglion neurones, which are affected by the acute central neurosteroid stimulation. The i.c.v. administration of ALLO via the GABAergic system altered 3β‐HSD activity and gene expression, modulating the neuroendocrine axis. The present study reveals the action that ALLO exerts on the GABAA receptor in both the central and peripheral nervous system and its relationship with hormonal variations. ALLO is involved in the “fine tuning” of neurosecretory functions as a potent modulator of reproductive processes in female rats.  相似文献   
6.
The mycotoxin zearalenone (ZEA) is found worldwide as contaminant in cereals and grains. It is implicated in reproductive disorders and hyperestrogenic syndromes in animals and humans exposed by food. We investigated metabolism and transfer of ZEA using the human Caco-2 cell line as a model of intestinal epithelial barrier. Cells exposed to 10–200 μM ZEA showed efficacious metabolism of the toxin. α-zearalenol and β-zearalenol were the measured preponderant metabolites (respectively 40.7 ± 3.1% and 31.9 ± 4.9% of total metabolites, after a 3 h exposure to 10 μM ZEA), whereas ZEA-glucuronide and α-zearalenol glucuronide were less produced (respectively 8.2 ± 0.9% and 19.1 ± 1.3% of total metabolites, after a 3 h exposure to 10 μM ZEA). Cell production of reduced metabolites was strongly inhibited by α-and β-hydroxysteroid dehydrogenase inhibitors, and Caco-2 cells exhibited α-hydroxysteroid dehydrogenase type II and β-hydroxysteroid dehydrogenase type I mRNA. After cell apical exposure to ZEA, α-zearalenol was preponderantly found at the basal side, whereas β-zearalenol and both glucuronides were preferentially excreted at the apical side. As α-zearalenol shows the strongest estrogenic activity, the preferential production and basal transfer of this metabolite suggests that intestinal cells may contribute to the manifestation of zearalenone adverse effects.  相似文献   
7.
BACKGROUND: Prostate cancer is a significant public health problem in this country. Substantial data support a plausible role for androgens in the etiology of this disease. The human HSD17B3 gene encodes the testicular (or type III) 17 beta-hydroxysteroid dehydrogenase enzyme, which catalyzes testosterone biosynthesis in men. METHODS: We have investigated the G289S (glycine at codon 289 replaced by serine) polymorphism at the HSD17B3 locus as a candidate single nucleotide polymorphism (SNP) for prostate cancer risk in constitutional DNA from 103 Italian prostate cancer patients and 109 Italian disease-free centenarians to assess the role of this SNP in susceptibility to prostate cancer. RESULTS: The G289S polymorphism confers a significant increase in risk for prostate cancer (odds ratio = 2.5; 95% confidence interval, 1.03-6.07) in our study population. CONCLUSION: Our data are consistent with a plausible role of the G289S SNP in prostate cancer susceptibility. Therefore, the HSD17B3 gene may be a plausible candidate gene for prostate cancer risk.  相似文献   
8.
9.
BACKGROUND: In rodents, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inactive 11-dehydrocorticosterone (DHC) into active corticosterone. The mRNA and activity of 11beta-HSD1 have been shown to be present in batch-incubated pancreatic islets from the ob/ob mouse. In other tissues, 11beta-HSD1 expression has been demonstrated to be regulated by glucocorticoids. In the present study, the influence of DHC on 11beta-HSD1 levels and glucose-induced changes in insulin secretion were studied in pancreatic islets isolated from the ob/ob mouse. METHODS: Western blotting with antiserum for 11beta-HSD1 verified the presence of 11beta-HSD1 in islets from obese ob/ob and normal C57BL/6J mice. Insulin secretion was determined by perifusing islets and assaying the perifusate with ELISA. RESULTS: Islets from the ob/ob mouse contained almost twofold more 11beta-HSD1 protein than islets from the C57BL/6J mouse. When islets from ob/ob mice were cultured with 50 nM DHC, the 11beta-HSD1 levels doubled compared with islets cultured in the absence of DHC. Selective inhibition of 11beta-HSD1 attenuated DHC-induced increase in 11beta-HSD1 levels, as did an antagonist of the glucocorticoid receptor. In individually perifused ob/ob mouse islets, early and late phases of glucose-stimulated insulin secretion (GSIS) were dose-dependently inhibited by 5, 50 and 500 nM DHC. Whereas inclusion of 11beta-HSD1 inhibitors restored, addition of the glucocorticoid receptor antagonist attenuated the DHC-mediated inhibition of GSIS. CONCLUSIONS: Levels of 11beta-HSD1 in islets from ob/ob mice are positively regulated by DHC and could be lowered by a selective 11beta-HSD1 inhibitor and a glucocorticoid receptor antagonist. Increased levels of 11beta-HSD1 were associated with impaired GSIS.  相似文献   
10.
The complementary activities of 5 alpha-reductase (5 alpha-R) and 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) are crucial for the synthesis of neuroactive 5 alpha/3 alpha-reduced steroids, such as 3 alpha-androstanediol, allopregnanolone, and tetrahydrodeoxycorticosterone, which control several important neurophysiological mechanisms through allosteric modulation of gamma-aminobutyric acid type A receptors. Immunocytochemical localization of 3 alpha-HSD in the central nervous system (CNS) has never been determined. The presence and activity of 5 alpha-R have been investigated in the CNS, but only the brain was considered; the spinal cord (SC) received little attention, although this structure is crucial for many sensorimotor activities. We have determined the first cellular distribution of 5 alpha-reductase type 1 (5 alpha-R1) and type 2 (5 alpha-R2) and 3 alpha-HSD immunoreactivities in adult rat SC. 5 alpha-R1 immunostaining was detected mainly in the white matter (Wm). In contrast, intense 5 alpha-R2 labeling was observed in dorsal (DH) and ventral horns of gray matter (Gm). 3 alpha-HSD immunoreactivity was largely distributed in the Wm and Gm, but the highest density was found in sensory areas of the DH. Double-labeling experiments combined with confocal analysis revealed that, in the Wm, 5 alpha-R1 was localized in glial cells, whereas 35% of 5 alpha-R2 and 3 alpha-HSD immunoreactivities were found in neurons. In the DH, 60% of 5 alpha-R2 immunostaining colocalized with oligodendrocyte, 25% with neuron, and 15% with astrocyte markers. Similarly, 45% of 3 alpha-HSD immunoreactivity was found in oligodendrocytes, 35% in neurons, and 20% in astrocytes. These results are the first demonstrating that oligodendrocytes and neurons of the SC possess the key enzymatic complex for synthesizing potent neuroactive steroids that may control spinal sensorimotor processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号