首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   53篇
  国内免费   16篇
基础医学   109篇
口腔科学   19篇
临床医学   56篇
内科学   63篇
皮肤病学   1篇
神经病学   8篇
特种医学   2篇
外科学   15篇
综合类   37篇
眼科学   2篇
药学   32篇
中国医学   4篇
肿瘤学   1篇
  2023年   3篇
  2022年   16篇
  2021年   37篇
  2020年   13篇
  2019年   18篇
  2018年   29篇
  2017年   16篇
  2016年   22篇
  2015年   23篇
  2014年   39篇
  2013年   55篇
  2012年   15篇
  2011年   18篇
  2010年   6篇
  2009年   13篇
  2008年   8篇
  2007年   13篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
1.
Summary: In the present contribution, the electrostatic spinning or electrospinning technique was used to produce ultra‐fine polyamide‐6 (PA‐6) fibers. The effects of solution conditions on the morphological appearance and the average diameter of as‐spun fibers were investigated by optical scanning (OS) and scanning electron microscopy (SEM) techniques. It was shown that the solution properties (i.e. viscosity, surface tension and conductivity) were important factors characterizing the morphology of the fibers obtained. Among these three properties, solution viscosity was found to have the greatest effect. Solutions with high enough viscosities (viz. solutions at high concentrations) were necessary to produce fibers without beads. At a given concentration, fibers obtained from PA‐6 of higher molecular weights appeared to be larger in diameter, but it was observed that the average diameters of the fibers from PA‐6 of different molecular weights had a common relationship with the solution viscosities which could be approximated by an exponential growth equation. Raising the temperature of the solution during spinning resulted in the reduction of the fiber diameters with higher deposition rate, while mixing m‐cresol with formic acid to serve as a mixed solvent for PA‐6 caused the solutions to have higher viscosities which resulted in larger fiber diameters. Lastly, the addition of some inorganic salts resulted in an increase in the solution conductivity, which caused the fiber diameters to increase due to the large increase in the mass flow.

Average diameter of as‐spun fibers plotted as a function of the viscosity of the solutions.  相似文献   

2.
Schwann cell basal lamina is a nanometer-thin extracellular matrix layer that separates the axon-bound Schwann cells from the endoneurium of the peripheral nerve. It is implicated in the promotion of nerve regeneration after transection injury by allowing Schwann cell colonization and axonal guidance. Hence, it is desired to mimic the native basal lamina for neural tissue engineering applications. In this study, basal lamina proteins from BD Matrigel (growth factor-reduced) were extracted and electrospun to deposit nonwoven nanofiber mats. Adjustment of solute protein concentration, potential difference, air gap distance and flow rate produced a basal lamina-like construct with an average surface roughness of 23 nm and composed of 100-nm-thick irregular and relatively discontinuous fibers. Culture of embryonic chick dorsal root ganglion explants demonstrated that the fabricated nanofiber layer supported explant attachment, elongation of neurites, and migration of satellite Schwann cells in a similar fashion compared to electrospun collagen type-I fibers. Furthermore, the presence of nanorough surface featues significantly increased the neurite spreading and Schwann cell growth. Sciatic nerve segment incubation also showed that the construct is promigratory to nerve Schwann cells. Results, therefore, suggest that the synthetic basal lamina fibers can be utilized as a biomaterial for induction of peripheral nerve repair.  相似文献   
3.
ObjectivesDecellularization aims to harness the regenerative properties of native extracellular matrix. The objective of this study was to evaluate different methods of decellularization of periodontal ligament cell sheets whilst maintaining their structural and biological integrity.DesignHuman periodontal ligament cell sheets were placed onto melt electrospun polycaprolactone (PCL) membranes that reinforced the cell sheets during the various decellularization protocols. These cell sheet constructs (CSCs) were decellularized under static/perfusion conditions using a) 20 mM ammonium hydroxide (NH4OH)/Triton X-100, 0.5% v/v; and b) sodium dodecyl sulfate (SDS, 0.2% v/v), both +/− DNase besides Freeze–thaw (F/T) cycling method. CSCs were assessed using a collagen quantification assay, immunostaining and scanning electron microscopy. Residual fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were assessed with Bio-plex assays.ResultsDNA removal without DNase was higher under static conditions. However, after DNase treatment, there were no differences between the different decellularization methods with virtually 100% DNA removal. DNA elimination in F/T was less efficient even after DNase treatment. Collagen content was preserved with all techniques, except with SDS treatment. Structural integrity was preserved after NH4OH/Triton X-100 and F/T treatment, while SDS altered the extracellular matrix structure. Growth factor amounts were reduced after decellularization with all methods, with the greatest reduction (to virtually undetectable amounts) following SDS treatment, while NH4OH/Triton X-100 and DNase treatment resulted in approximately 10% retention.ConclusionsThis study showed that treatment with NH4OH/Triton X-100 and DNase solution was the most efficient method for DNA removal and the preservation of extracellular matrix integrity and growth factors retention.  相似文献   
4.
5.
A capability for effective tissue reparation is a living requirement for all multicellular organisms. Bone exits as a precisely orchestrated balance of bioactivities of bone forming osteoblasts and bone resorbing osteoclasts. The main feature of osteoblasts is their capability to produce massive extracellular matrix enriched with calcium phosphate minerals. Hydroxyapatite and its composites represent the most common form of bone mineral providing mechanical strength and significant osteoinductive properties. Herein, hydroxyapatite and fluorapatite functionalized composite scaffolds based on electrospun polycaprolactone have been successfully fabricated. Physicochemical properties, biocompatibility and osteoinductivity of generated matrices have been validated. Both the hydroxyapatite and fluorapatite containing polycaprolactone composite scaffolds demonstrated good biocompatibility towards mesenchymal stem cells. Moreover, the presence of both hydroxyapatite and fluorapatite nanoparticles increased scaffolds’ wettability. Furthermore, incorporation of fluorapatite nanoparticles enhanced the ability of the composite scaffolds to interact and support the mesenchymal stem cells attachment to their surfaces as compared to hydroxyapatite enriched composite scaffolds. The study of osteoinductive properties showed the capacity of fluorapatite and hydroxyapatite containing composite scaffolds to potentiate the stimulation of early stages of mesenchymal stem cells’ osteoblast differentiation. Therefore, polycaprolactone based composite scaffolds functionalized with fluorapatite nanoparticles generates a promising platform for future bone tissue engineering applications.  相似文献   
6.
7.
Abstract

Conducting polymer-based scaffolds receive biological and electrical signals from the extracellular matrix (ECM) or peripheral cells, thereby promoting cell growth and differentiation. Chitin, a natural polymer, is widely used as a scaffold because it is biocompatible, biodegradable, and nontoxic. In this study, we used an electrospinning technique to fabricate conductive scaffolds from aligned chitin/polyaniline (Chi/PANi) nanofibers for the directional guidance of cells. Pure chitin and random and aligned Chi/PANi nanofiber scaffolds were characterized using field emission scanning electron microscope (FE-SEM) and by assessing wettability, mechanical properties, and electrical conductivity. The diameters of aligned Chi/PANi nanofibers were confirmed to be smaller than those of pure chitin and random nanofibers owing to electrostatic forces and stretching produced by rotational forces of the drum collector. The electrical conductivity of aligned Chi/PANi nanofiber scaffolds was ~91% higher than that of random nanofibers. We also studied the viability of human dermal fibroblasts (HDFs) cultured on Chi/PANi nanofiber scaffolds in vitro using a CCK-8 assay, and found that cell viability on the aligned Chi/PANi nanofiber scaffolds was ~2.1-fold higher than that on random Chi/PANi nanofiber scaffolds after 7 days of culture. Moreover, cells on aligned nanofiber scaffolds spread in the direction of the aligned nanofibers (bipolar), whereas cells on the random nanofibers showed no spreading (6 h of culture) or multipolar patterns (7 days of culture). These results suggest that aligned Chi/PANi nanofiber scaffolds with conductivity exert effects that could improve survival and proliferation of cells with directionality.  相似文献   
8.
Abstract

Heparins are capable of improving blood compatibility, enhancing HUVEC viability, while inhibiting HUASMC proliferation. Combination of biodegradable poly(ε-caprolactone) (PCL) with keratin and heparins would provide an anticoagulant and endothelialization supporting environment for vascular tissue engineering. Herein, PCL and keratin were first coelectrospun and then covalently conjugated with heparins. The resulting mats were surface-characterized by ATR-FTIR, SEM, WCA, and XPS. Cell viability data showed that the heparinized PCL/keratin mats could motivate the adhesion and growth of HUVEC, while inhibit HUASMC proliferation. In addition, these mats could prolong blood clotting time and reduce platelet adhesion as well as no erythrolysis. Interestingly, these mats could catalyze the NO donor in blood to release NO, which could enhance endothelial cell growth, while decrease smooth muscle cell proliferation and platelet adhesion. In summary, the heparinized mats would be a good candidate as a scaffold for vascular tissue engineering. This study is novel in that we prepared a type of heparinized tissue scaffold that could catalyze the NO donor to release NO to regulate endothelialization without angiogenesis and thrombus formation.  相似文献   
9.
Articular cartilage has a limited capacity to heal and, currently, no treatment exists that can restore normal hyaline cartilage. Creating tissue engineering scaffolds that more closely mimic the native extracellular matrix may be an attractive approach. Glycosaminoglycans, which are present in native cartilage tissue, provide signalling and structural cues to cells. This study evaluated the use of a glycosaminoglycan mimetic, derived from cellulose, as a potential scaffold for cartilage repair applications. Fully sulfated sodium cellulose sulfate (NaCS) was initially evaluated in soluble form as an additive to cell culture media. Human mesenchymal stem cell (MSC) chondrogenesis in pellet culture was enhanced with 0.01% NaCS added to induction media as demonstrated by significantly higher gene expression for type II collagen and aggrecan. NaCS was combined with gelatine to form fibrous scaffolds using the electrospinning technique. Scaffolds were characterized for fibre morphology, overall hydrolytic stability, protein/growth factor interaction and for supporting MSC chondrogenesis in vitro. Scaffolds immersed in phosphate buffered saline for up to 56 days had no changes in swelling and no dissolution of NaCS as compared to day 0. Increasing concentrations of the model protein lysozyme and transforming growth factor‐β3 were detected on scaffolds with increasing concentrations of NaCS (p < 0.05). MSC chondrogenesis was enhanced on the scaffold with the lowest NaCS concentration as seen with the highest collagen type II production, collagen type II immunostaining, and expression of cartilage‐specific genes. These studies demonstrate the feasibility of cellulose sulfate as a scaffolding material for cartilage tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
The challenge of developing scaffolds to reconstruct critical‐sized calvarial defects without the addition of high levels of exogenous growth factor remains relevant. Both osteogenic regenerative efficacy and suitable mechanical properties for the temporary scaffold system are of importance. In this study, a Mg alloy mesh reinforced polymer/demineralized bone matrix (DBM) hybrid scaffold was designed where the hybrid scaffold was fabricated by a concurrent electrospinning/electrospraying of poly(lactic‐co‐glycolic acid) (PLGA) polymer and DBM suspended in hyaluronic acid (HA). The Mg alloy mesh significantly increased the flexural strength and modulus of PLGA/DBM hybrid scaffold. In vitro results demonstrated that the Mg alloy mesh reinforced PLGA/DBM hybrid scaffold (Mg‐PLGA@HA&DBM) exhibited a stronger ability to promote the proliferation of bone marrow stem cells (BMSCs) and induce BMSC osteogenic differentiation compared with control scaffolding materials lacking critical components. In vivo osteogenesis studies were performed in a rat critical‐sized calvarial defect model and incorporated a variety of histological stains and immunohistochemical staining of osteocalcin. At 12 weeks, the rat model data showed that the degree of bone repair for the Mg‐PLGA@HA&DBM scaffold was significantly greater than for those scaffolds lacking one or more of the principal components. Although complete defect filling was not achieved, the improved mechanical properties, promotion of BMSC proliferation and induction of BMSC osteogenic differentiation, and improved promotion of bone repair in the rat critical‐sized calvarial defect model make Mg alloy mesh reinforced PLGA/DBM hybrid scaffold an attractive option for the repair of critical‐sized bone defects where the addition of exogenous isolated growth factors is not employed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号