首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
基础医学   2篇
内科学   2篇
综合类   2篇
  2021年   1篇
  2015年   2篇
  2012年   1篇
  2011年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Colloidal monolayers represent a versatile material class to fabricate nanostructures with high quality. The length scale of the nanostructured film is given by the size of the colloidal nanoparticles. Importantly, colloidal monolayers, though being of hexagonally close packed symmetry, still embody a high amount of free volume. This reduces the effective refractive index of thin colloidal monolayer films significantly. For particles and periodicities <200 nm, the heterogeneous layer can be approximated by an effective medium theory. The amount of free volume can be further fine‐tuned by a controlled size reduction of the constituting spheres, for instance by plasma etching. This can be utilized to realize an optimum refractive index for the application of colloidal monolayers as antireflective (AR) coatings. In contrast, previously reported >200 nm monolayers demonstrate distinct extinction peaks due to grating diffraction. Rational design by the use of differently sized particles further allows shifting the best performance across the visible spectrum. Colloidal monolayers, though representing single‐layer AR coatings, exhibit broadband AR properties and are ideally suited to demonstrate the influence of refractive index and layer thickness, independently.

  相似文献   

2.
3.
Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages.  相似文献   
4.
利用低分子量环氧树脂(DGEBA)在固化后和与之共混的聚氯乙烯(PVC)之间产生的相分离,用丁酮抽提其中的PVC组分,制备了环氧树脂基多孔增透膜。测试结果表明,当mDOEBA/mPVC=30/70、膜厚为110nm时,增透膜的透过率最高,达96%以上。薄膜在水或甲苯中煮沸不发生收缩、脱落,表现良好的粘附力和机械强度。  相似文献   
5.
用中性溶液法在硼硅酸盐玻璃片上制备了低反射涂层,并在Na2HPO4和AlCl3组成的浸涂液中于95 °C条件下恒温浸泡6 h,结果表明硼硅酸盐玻璃片在400~900 nm波长内的平均透过率由原来的91.97%提高至98.97%,平均反射率降低至1.41%,中心波长处反射率仅为0.85%。为提高涂膜的耐候性,以低质量分数的十三氟辛基三乙氧基硅烷(FAS)对涂层样品进行表面处理。抗酸性测试结果表明:经w=0.3%的FAS溶液处理后的低反射涂层在1 mol/L盐酸中连续侵蚀7 d后,透过率平均值仍达到95.44%。说明经过FAS处理后,低反射涂层的耐候性能得到提高,使用寿命延长。  相似文献   
6.
An SiO2-TiO2 closed-surface antireflective coating was fabricated by the one-dipping method. TiO2 nanoparticles were mixed with a nanocomposited silica sol, which was composed of acid-catalyzed nanosilica networks and silica hollow nanospheres (HNs). The microstructure of the sol-gel was characterized by transmission electron microscopy. The silica HNs were approximately 40–50 nm in diameter with a shell thickness of approximately 8–10 nm. The branched-chain structure resulting from acidic hydrolysis grew on these silica HNs, and TiO2 was distributed inside this network. The surface morphology of the coating was measured by field emission scanning electron microscopy and atomic force microscopy. After optimization, transmittance of up to 94.03% was obtained on photovoltaic (PV) glass with a single side coated by this antireflective coating, whose refractive index was around 1.30. The short-circuit current gain of PV module was around 2.14–2.32%, as shown by the current-voltage (IV) curve measurements and external quantum efficiency (EQE) tests. This thin film also exhibited high photocatalytic activity. Due to the lack of voids on its surface, the antireflective coating in this study possessed excellent long-term reliability and robustness in both high-moisture and high-temperature environments. Combined with its self-cleaning function, this antireflective coating has great potential to be implemented in windows and photovoltaic modules.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号