首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   10篇
  国内免费   11篇
耳鼻咽喉   1篇
儿科学   5篇
妇产科学   6篇
基础医学   91篇
口腔科学   1篇
临床医学   6篇
内科学   49篇
皮肤病学   3篇
神经病学   71篇
特种医学   4篇
外科学   12篇
综合类   21篇
预防医学   10篇
眼科学   3篇
药学   93篇
中国医学   2篇
肿瘤学   7篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   9篇
  2013年   10篇
  2012年   9篇
  2011年   11篇
  2010年   5篇
  2009年   15篇
  2008年   10篇
  2007年   19篇
  2006年   10篇
  2005年   11篇
  2004年   14篇
  2003年   13篇
  2002年   13篇
  2001年   6篇
  2000年   10篇
  1999年   15篇
  1998年   13篇
  1997年   14篇
  1996年   23篇
  1995年   13篇
  1994年   22篇
  1993年   21篇
  1992年   13篇
  1991年   14篇
  1990年   8篇
  1989年   13篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有385条查询结果,搜索用时 46 毫秒
1.

Background

Acute myocardial infarction (AMI) causes irreversible myocardial damage and release of inflammatory mediators, including cytokines, chemokines and miRNAs. We aimed to investigate changes in the levels of cytokines (IL-6, TNF-α and IL-10), miRNAs profiles (miR-146 and miR-155) and distribution of different monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) in the acute and post-healing phases of AMI.

Methods

In eighteen consecutive AMI patients (mean age 56.78?±?12.4 years, mean left ventricle ejection fraction – LVEF: 41.9?±?9.8%), treated invasively, monocyte subsets frequencies were evaluated (flow cytometry), cytokine concentrations were analyzed (ELISA) as well as plasma miRNAs were isolated twice – on admission and after 19.2?±?5.9 weeks of follow-up. Measurements were also performed among healthy volunteers.

Results

AMI patients presented significantly decreased frequencies of classical cells in comparison to healthy controls (median 71.22% [IQR: 64.4–79.04] vs. 84.35% [IQR: 81.2–86.7], p?=?0.001) and higher percent of both intermediate and non-classical cells, yet without statistical significance (median 6.54% [IQR: 5.14–16.64] vs. 5.87% [IQR: 4.48–8.6], p?=?0.37 and median 5.99% [IQR: 3.39–11.5] vs. 5.26% [IQR: 3.62–6.2], p?=?0.42, respectively). In AMI patients both, analyzed plasma miRNA concentrations were higher than in healthy subjects (miR-146: median 5.48 [IQR: 2.4–11.27] vs. 1.84 [IQR: 0.87–2.53], p?=?0.003; miR-155: median 25.35 [IQR: 8.17–43.15] vs. 8.4 [IQR: 0.08–16.9], p?=?0.027, respectively), and returned back to the values found in the control group in follow-up. miR-155/miR-146 ratio correlated with the frequencies of classical monocytes (r=0.6, p?=?0.01) and miR-155 correlated positively with the concentration of inflammatory cytokines ? IL-6 and TNF-α.

Conclusions

These results may suggest cooperation of both pro-inflammatory and anti-inflammatory signals in AMI in order to promote appropriate healing of the infarcted myocardium.  相似文献   
2.
The subcellular localization of the inositol 1,4,5-trisphosphate receptor protein, P400, was studied in the vestibular complex, an area to which Purkinje cells project, as well as in neurons of the dorsal cochlear nucleus and in ectopic Purkinje cells of adult rat brain. The receptor was demonstrated by electron microscopical immunocytochemistry using the avidin-biotin peroxidase complex procedure, with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactivity was found in preterminal fibres and terminal boutons in the nuclei of the vestibular complex, generally associated with the subsurface systems and stacks or fragments of smooth endoplasmic reticulum. Ectopic Purkinje cells and cartwheel cells of the dorsal cochlear nucleus also displayed immunoreactivity, but this was much less intense in the latter. The results of the present study suggest that this receptor protein, involved in the release of Ca2+, is located in sites that enable it to influence the synthesis, transport and release of neurotransmitters.  相似文献   
3.
Chronic Ethanol Inhibits Inositol Metabolism in Specific Brain Regions   总被引:1,自引:0,他引:1  
Many neurotransmitters and hormones in the nervous system transmit signals through receptors coupled to the poly-phosphoinositide (PI) signaling pathway. In this study, an in vivo protocol with (3H]inositol was used to examine the effect of chronic ethanol administration on inositol metabolism and poly-PI turnover in the cerebral cortex, hippocampus, and cerebellum of mouse brain. C57BL/6 mice were given a nutritionally complete liquid diet containing either ethanol (5%, w/v) or isocaloric sucrose for 2 months. Mice were injected intracerebrally with rH]inositol; after 16 or 24 hr, they were injected intraperitoneally with lithium (8 mEq/kg body weight) to inhibit the inositol monophosphatase (IP1) activity. All mice were decapitated 4 hr after lithium injection. Labeled inositol phospholipids accounted for 16 to 23% of total labeled inositol in different regions of control mouse brain, and the percentages in the hippocampus were consistently higher than the cerebral cortex and cerebellum. In control mice, the percentages of labeled IP, after a 4-hr lithium treatment were 11.5%, 9.9%, and 3.7% for cerebral cortex, hippocampus, and cerebellum, respectively. Chronic ethanol feeding resulted in a significant (p < 0.05) decrease in the percent of labeled IP1 and inositol phospholipids, and this effect was observed in the cerebral cortex and, to a lesser extent, hippocampus but not cerebellum. When ratios of labeled IP1 were expressed against labeled inositol phospholipids as an index of the poly-PI turnover activity, significant decreases in IP/lipid ratios were observed in the cerebral cortex, but not the hippocampus or cerebellum. Although mice killed 24 + 4 hr after the last ethanol feeding would have experienced an 8-hr period of ethanol withdrawal, compared with the 16 + 4-hr group, no differences in IP/lipid ratios were observed between the two time groups. These results illustrate regional differences in the effect of chronic ethanol on inositol metabolism in the brain, but no difference in poly-PI turnover in brain due to ethanol withdrawal.  相似文献   
4.
Inositol is an important precursor for second messenger synthesis and has been reported to be reduced by lithium treatment in rat brain and in human CSF in depression. An open trial of 6 g/day in 11 depressed patients resistant to previous treatment led to major improvement in nine patients. The enzyme synthesizing inositol has been reported to be elevated in schizophrenia, suggesting an attempted compensation for possible inositol deficiency. A controlled double-blind crossover trial in 10 chronic schizophrenic patients of 6 g/day of inositol for 30 days did not reveal any benefit.  相似文献   
5.
Bath application of the inhibitors of phospholipases, nordihydroguaiaretic acid (NDGA) and p-bromophenacyl bromide (BPB), to the rat hippocampal slices suppressed long-term potentiation (LTP) in Schaffer/commissural-CA1 pyramidal synapses. On the other hand, neither of the two inhibitors suppressed LTP in mossy fiber-CA3 pyramidal cell synapses. BPB did not suppress phosphatidylinositol-specific phospholipase C (PI-PLC) activity of the slices. These results suggested that the mechanisms of LTP were quite different in the CA1 and CA3 subfields of rat hippocampus: in CA1, the involvement of an arachidonate metabolism was strongly suggested, whereas in CA3, an arachidonic acid cascade may not be necessary for LTP.  相似文献   
6.
The effects of increases in cellular adenosine 3′5′-cyclic monophosphate (cAMP) on 5-hydroxytryptamine-(5-HT-) induced generation of inositol phosphates (IPs) and increases in intracellular Ca2+ ([Ca2+]i) were investigated using canine cultured tracheal smooth muscle cells (TSMCs). Cholera toxin and forskolin induced concentration- and time-dependent cAMP formation with half-maximal effects (−logEC50) produced at concentrations of 7.0 ± 0.5 and 4.9 ± 0.4  respectively. Pretreatment of TSMCs with either forskolin or dibutyryl cAMP inhibited 5-HT-stimulated responses. Even after treatment for 24h, these agents still inhibited the 5-HT-induced Ca2+ mobilization. The inhibitory effects of these agents produced both depression of the maximal response and a shift to the right of the concentration response curves of 5-HT. The water-soluble forskolin analogue L-858051 [7-deacetyl-7β-(γ-N-methylpiperazino)-butyryl forskolin] significantly inhibited the 5-HT-stimulated accumulation of IPs. In contrast, the addition of 1,9-dideoxy forskolin, an inactive forskolin analogue, had little effect on this response. Moreover, SQ-22536 [9-(tetrahydro-2-furanyl)-9-H-purin-6-amine], an inhibitor of adenylate cyclase, and both H-89 [N-(2-aminoethyl)-5-isoquinolinesulphonamide] and HA-1004[N-(2-guanidinoethyl)-5-isoquinolinesulphonamide], inhibitors of cAMP-dependent protein kinase (PKA), attenuated the ability of forskolin to inhibit the 5-HT-stimulated accumulation of IPs. These results suggest that activation of cAMP/PKA was involved in these inhibitory effects of forskolin. The AlF4 -induced accumulation of IPs was inhibited by forskolin, suggesting that G protein(s) are directly activated by AlF4 - and uncoupled from phospholipase C by forskolin treatment. These results suggest that activation of cAMP/PKA might inhibit the 5-HT-stimulated phosphoinositide breakdown and consequently reduce the [Ca2+]i increase or inhibit both responses independently. Received: 14 March 1996/Accepted: 10 April 1996  相似文献   
7.
Epilepsy affects approximately 1% of the population worldwide, and there is a pressing need to develop new anti-epileptic drugs (AEDs) and understand their mechanisms of action. Levetiracetam (LEV) is a novel AED and despite its increasingly widespread clinical use, its mechanism of action is as yet undetermined. Intracellular calcium ([Ca2+]i) regulation by both inositol 1,4,5-triphosphate receptors (IP3R) and ryanodine receptors (RyR) has been implicated in epileptogenesis and the maintenance of epilepsy. To this end, we investigated the effect of LEV on RyR and IP3R activated calcium-induced calcium release (CICR) in hippocampal neuronal cultures. RyR-mediated CICR was stimulated using the well-characterized RyR activator, caffeine. Caffeine (10 mM) caused a significant increase in [Ca2+]i in hippocampal neurons. Treatment with LEV (33 μM) prior to stimulation of RyR-mediated CICR by caffeine led to a 61% decrease in the caffeine induced peak height of [Ca2+]i when compared to the control. Bradykinin stimulates IP3R-activated CICR—to test the effect of LEV on IP3R-mediated CICR, bradykinin (1 μM) was used to stimulate cells pre-treated with LEV (100 μM). The data showed that LEV caused a 74% decrease in IP3R-mediated CICR compared to the control. In previous studies we have shown that altered Ca2+ homeostatic mechanisms play a role in seizure activity and the development of spontaneous recurrent epileptiform discharges (SREDs). Elevations in [Ca2+]i mediated by CICR systems have been associated with neurotoxicity, changes in neuronal plasticity, and the development of AE. Thus, the ability of LEV to modulate the two major CICR systems demonstrates an important molecular effect of this agent on a major second messenger system in neurons.  相似文献   
8.
Sodium absorption in distal tubule segments was stimulated by increasing the distal delivery via infusion of hypertonic saline. In these animals, and in control rats, electrolyte concentrations in thick ascending limb cells, light and dark cells of the collecting duct in the outer and inner stripe of the outer medulla and in cells of the proximal straight tubule (outer stripe only) were studied. The measurements were performed by electron microprobe analysis of freeze-dried cryosections of the outer medulla. In addition, organic osmolytes (glycerophosphorylcholine, betaine and myo-inositol) were measured by high performance liquid chromatography in cortex and outer medulla. Augmented delivery of sodium chloride to the distal tubule was associated with increased sodium concentrations of thick ascending limb cells both in the outer and inner stripe and of medullary collecting duct light and dark cells in the outer stripe. While the sum of organic osmolyte concentrations was 28% higher in the outer medulla of the salt-loaded animals compared with controls, this value was unchanged in the renal cortex. These findings indicate that the primary event underlying stimulation of sodium absorption along the thick ascending limb during increased distal sodium delivery is enhanced entry of sodium across the apical cell membrane. This would be expected to lead to higher cell sodium concentrations and stimulation of basolateral active Na-K-exchange. The enhanced transport activity of outer medullary tubules may be associated with increased interstitial tonicities and intracellular retention of organic osmolytes.  相似文献   
9.
In this study, the desensitization of acetylcholine-induced inositol 1,4,5-trisphosphate [I(1,4,5)P3] formation, upon short-time prestimulations, was investigated in cultures of human neuroblastoma SH-SY5Y cells. Four repeated stimulations for 10 seconds with 10 μM acetylcholine were necessary to induce a desensitization of the I(1,4,5)P3 formation. The desensitization was observed 4 hours after the initiation of repetitive stimulations. The same effect was obtained by a single prestimulation with 1 mM acetylcholine. Preincubation of the cells with phorbol 12-myristate 13-acetate (PMA) markedly down-regulated the acetylcholine-induced I(1,4,5)P3 formation. However, the protein kinase C (PKC) inhibitors H7 and staurosporine did not influence the desensitization induced by four repeated stimulations with 20 μM acetylcholine. These results indicate that the signal transduction can be desensitized following repeated stimulations with sub-maximal concentrations of receptor agonist and although activation of PKC can induce the same down-regulation, PKC is most likely not involved in the desensitization induced by repetitive acetylcholine-stimulations.  相似文献   
10.
The cholinergic responses of the human tumour cell line TE671/RD were examined using digital Ca2+ imaging fluorescence microscopy and patch-clamp measurements. In response to stimulation of the muscarinic acetylcholine (ACh) receptor (mAChR), the intracellular concentration of Ca2+ ([Ca2+]i) rose about two-fold, in parallel with inositol 1,4,5-trisphosphate accumulation, measured by chromatographic techniques. By contrast, there was no increment of [Ca2+]i upon stimulation of the nicotinic ACh receptor (nAChR), nor after caffeine application. Electrophysiological experiments showed that TE671/RD cells lack functional voltage-activated Ca2+ channels. The stimulation of the nAChR induced transient whole-cell currents (I ACh). Little or no current was detected in isotonic extracellular Ca2+, with Cs+ in the patch pipette. Cell pretreatment with muscarine reduced I ACh by about 20%, without consistent modifications of current kinetics. Muscarine applied to the extra-patch membrane under the cell-attached configuration had no obvious effect on ACh-evoked unitary events. In conclusion, in human TE671/ RD cells, muscarinic stimulation increases [Ca2+]i, while nicotinic stimulation does not. In addition, the nAChR exhibits peculiar ion permeability properties and is not functionally regulated by the breakdown of phosphoinositides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号