首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
基础医学   8篇
口腔科学   9篇
临床医学   1篇
内科学   74篇
皮肤病学   1篇
特种医学   1篇
外科学   5篇
综合类   2篇
预防医学   1篇
眼科学   1篇
药学   2篇
肿瘤学   1篇
  2024年   1篇
  2023年   5篇
  2022年   19篇
  2021年   37篇
  2020年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
We investigated the enamel demineralization‐prevention ability and shear bond strength (SBS) properties of 4‐methacryloxyethyl trimellitic anhydride/methyl methacrylate‐tri‐n‐butyl borane (4‐META/MMA‐TBB)‐based resin containing various amounts (0–50%) of bioactive glass (BG). Disk‐shaped specimens were immersed in distilled water and ions released were analysed by inductively coupled plasma atomic‐emission spectroscopy. Samples were also immersed in lactic acid solution (pH 4.6) to estimate acid‐neutralizing ability. Brackets were bonded to human premolars with BG‐containing resins and the bonded teeth were alternately immersed in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 d. The enamel hardness was determined by nanoindentation testing at twenty equidistant distances from the external surface. The SBS for each sample was examined. The amounts of ions released [calcium (Ca), sodium (Na), silicon (Si), and boron (B)] and the acid‐neutralizing ability increased with increasing BG content. After alternating immersion, the specimens bonded with the BG‐containing resin with high BG content were harder than those in the other groups in some locations 1–18.5 μm from the enamel surface. Bioactive glass‐containing (10–40%) resin had bond strength equivalent to the control specimen. Thus, the SBS obtained for BG‐containing resin (6.5–9.2 MPa) was clinically acceptable, suggesting that this material has the ability to prevent enamel demineralization.  相似文献   
2.
The paper presents the study results of laser processing of precoat applied on C30 steel. The precoat consisted of powder mixtures with a binder in the form of water glass. Tungsten powder, chromium, and tungsten carbide (WC) were used to produce the precoat. The laser processing was carried out using a Yb:YAG disc laser with a rated power of 1 kW. Constant producing parameters (power of laser beam, 600 W; laser beam scanning rate, 400 mm/min) were applied. Chemical composition of the precoat was a variable parameter in coating production. A mixture consisting of 50% W and 50% Cr as a metal matrix was prepared. Subsequently, WC particles in weight ratios of 25%, 50%, and 75% were added to matrix. As a result, W–Cr metal matrix composite coatings reinforced with WC particles were formed. This study focused on investigation of microstructure, microhardness, phase, and chemical composition as well as corrosion and wear resistance, of the newly formed W–Cr/WC coatings. An instrumented nanoindentation test was also used in this study. As a result of laser beam action, the newly formed coatings had an interesting microstructure and good properties which were improved in comparison to substrate material. It is anticipated that the resulting coatings, depending on the treatment parameters (e.g., W–Cr/WC powder mixture) used, can be successfully applied to metal forming or foundry tools.  相似文献   
3.
Capsid maturation with large-scale subunit reorganization occurs in virtually all viruses that use a motor to package nucleic acid into preformed particles. A variety of ensemble studies indicate that the particles gain greater stability during this process, however, it is unknown which material properties of the fragile procapsids change. Using Atomic Force Microscopy-based nano-indentation, we study the development of the mechanical properties during maturation of bacteriophage HK97, a λ-like phage of which the maturation-induced morphological changes are well described. We show that mechanical stabilization and strengthening occurs in three independent ways: (i) an increase of the Young's modulus, (ii) a strong rise of the capsid's ultimate strength, and (iii) a growth of the resistance against material fatigue. The Young's modulus of immature and mature capsids, as determined from thin shell theory, fit with the values calculated using a new multiscale simulation approach. This multiscale calculation shows that the increase in Young's modulus isn't dependent on the crosslinking between capsomers. In contrast, the ultimate strength of the capsids does increase even when a limited number of cross-links are formed while full crosslinking appears to protect the shell against material fatigue. Compared to phage λ, the covalent crosslinking at the icosahedral and quasi threefold axes of HK97 yields a mechanically more robust particle than the addition of the gpD protein during maturation of phage λ. These results corroborate the expected increase in capsid stability and strength during maturation, however in an unexpected intricate way, underlining the complex structure of these self-assembling nanocontainers.  相似文献   
4.
This research work aims at investigating the influence of a fixed content of silicon nitride (Si3N4) and varied contents of graphene nanoplatelets (GNPs) on the physical (density, structural, morphological) and mechanical properties (microhardness, nanoindentation) of Al-Si3N4-GNPs composites. The composites were fabricated by a microwave-assisted powder metallurgy route. The Si3N4 concentration was fixed at (5 wt.%) in Al-Si3N4-GNPs composites while the GNPs concentration was varied between (0 wt.%) to (1.5 wt.%) with an increment of (0.5 wt.%). The structural analysis indicates the formation of phase pure materials with high crystallinity. The microstructural analysis confirmed the presence of the Si3N4 and GNPs showing enhanced agglomeration with the increasing amount of GNPs. Moreover, the surface roughness of the synthesized composites increases with an increasing amount of GNPs reaching its maximum value (RMS = 65.32 nm) at 1.5 wt.% of GNPs. The Al-Si3N4-GNPs composites exhibit improved microhardness and promising load-indentation behavior during nanoindentation when compared to pure aluminum (Al). Moreover, Al-Si3N4-GNPs composites demonstrate higher values of compressive yield strength (CYS) and ultimate compressive strength (UCS) when compared to pure Al despite showing a declining trend with an increasing amount of GNPs in the matrix. Finally, a shear mode of fracture is prevalent in Al-Si3N4-GNPs composites under compression loading.  相似文献   
5.
6.
We report a novel method to pattern the stiffness of an elastomeric nanocomposite by selectively impeding the cross-linking reactions at desired locations while curing. This is accomplished by using a magnetic field to enforce a desired concentration distribution of colloidal magnetite nanoparticles (MNPs) in the liquid precursor of polydimethysiloxane (PDMS) elastomer. MNPs impede the cross-linking of PDMS; when they are dispersed in liquid PDMS, the cured elastomer exhibits lower stiffness in portions containing a higher nanoparticle concentration. Consequently, a desired stiffness pattern is produced by selecting the required magnetic field distribution a priori. Up to 200% variation in the reduced modulus is observed over a 2 mm length, and gradients of up to 12.6 MPa·mm−1 are obtained. This is a significant improvement over conventional nanocomposite systems where only small unidirectional variations can be achieved by varying nanoparticle concentration. The method has promising prospects in additive manufacturing; it can be integrated with existing systems thereby adding the capability to produce microscale heterogeneities in mechanical properties.  相似文献   
7.
This work presents the nanoindentation and XPS results of a newly-developed biomaterial of titanium TNZ alloy after different surface treatments. The investigations were performed on the samples AR (as received), EP (after a standard electropolishing) and MEP (after magnetoelectropolishing). The electropolishing processes, both EP and MEP, were conducted in the same proprietary electrolyte based on concentrated sulfuric acid. The mechanical properties of the titanium TNZ alloy biomaterial demonstrated an evident dependence on the surface treatment method, with MEP samples revealing extremely different behavior and mechanical properties. The reason for that different behavior appeared to be influenced by the surface film composition, as revealed by XPS study results displayed in this work. The increase of niobium and zirconium in the surface film of the same titanium TNZ alloy after magnetoelectropolishing MEP treatment is meaningful and especially advantageous considering the application of this alloy as a biomaterial.  相似文献   
8.
Influences of two different sample preparation methods, mechanical polishing and plunge cutting, on nanoindentation behavior of a Zr-based bulk metallic glass were studied. Mechanical polishing suppresses the serrated flow but promotes the creep. In contrast, plunge cutting promotes the serrated flow but suppresses the creep. However, hardness and elastic modulus obtained from these two methods are nearly the same.  相似文献   
9.
Bone exhibits rate‐dependent failure behavior, suggesting that viscoelasticity is a factor in the damage and fracture of bone. Microdamage initiates at scales below the macroscopic porosity in bone, and, as such, is affected by the intrinsic viscoelasticity of the bone tissue. The viscoelasticity of the bone tissue can be measured by nanoindentation and recording the creep behavior at constant load. The viscoelastic properties have been used to assess differences in tissue behavior with respect to fracture healing, aging, and mouse strains. In this study, we compared the viscoelastic behavior of human cortical bone between genders by using nanoindentation at a fixed load of 10 mN to measure the creep time constant. Bones from females had a significantly greater time constant, indicating slower creep and relaxation, than bones from males. The creep time constants decreased with increasing tissue modulus. The mineralization, collagen content, and collagen cross‐link density, which were bulk measurements, were analyzed to determine if the differences in viscoelastic behavior were explained by compositional differences in the bone. However, none of the parameters differed between genders, nor were they correlated to the viscoelastic time constant. As such, the difference must depend on other matrix proteins that we did not assess or differences in the microstructural organization. This is one of the only intrinsic bone material properties that has been found to differ between males and females, and it may be important for assessing differences in fracture risk, since crack propagation is generally sensitive to viscoelastic properties. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:693–699, 2012  相似文献   
10.
The investigation of the crack propagation in as-extruded and heat-treated Mg-Dy-Nd-Zn-Zr alloy with a focus on the interaction of long-period stacking-ordered (LPSO) structures is the aim of this study. Solution heat treatment on a hot extruded Mg-Dy-Nd-Zn-Zr (RESOLOY®) was done to change the initial fine-grained microstructure, consisting of grain boundary blocky LPSO and lamellar LPSO structures within the matrix, into coarser grains of less lamellar and blocky LPSO phases. C-ring compression tests in Ringer solution were used to cause a fracture. Crack initiation and propagation is influenced by twin boundaries and LPSO lamellae. The blocky LPSO phases also clearly hinder crack growth, by increasing the energy to pass either through the phase or along its interface. The microstructural features were characterized by micro- and nanohardness as well as the amount and location of LPSO phases in dependence on the heat treatment condition. By applying nanoindentation, blocky LPSO phases show a higher hardness than the grains with or without lamellar LPSO phases and their hardness decreases with heat treatment time. On the other hand, the matrix increases in hardness by solid solution strengthening. The microstructure consisting of a good balance of grain size, matrix and blocky LPSO phases and twins shows the highest fracture energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号