首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176522篇
  免费   16623篇
  国内免费   8833篇
耳鼻咽喉   1230篇
儿科学   2368篇
妇产科学   3335篇
基础医学   39526篇
口腔科学   4864篇
临床医学   14462篇
内科学   24163篇
皮肤病学   3383篇
神经病学   11293篇
特种医学   4548篇
外国民族医学   51篇
外科学   15726篇
综合类   27374篇
现状与发展   35篇
一般理论   14篇
预防医学   7206篇
眼科学   6185篇
药学   17305篇
  47篇
中国医学   5156篇
肿瘤学   13707篇
  2024年   300篇
  2023年   2052篇
  2022年   3915篇
  2021年   5529篇
  2020年   5187篇
  2019年   4764篇
  2018年   4883篇
  2017年   5578篇
  2016年   6176篇
  2015年   6744篇
  2014年   10623篇
  2013年   13247篇
  2012年   10390篇
  2011年   11846篇
  2010年   9911篇
  2009年   9499篇
  2008年   9841篇
  2007年   10035篇
  2006年   9235篇
  2005年   8095篇
  2004年   6958篇
  2003年   5750篇
  2002年   4602篇
  2001年   3895篇
  2000年   3299篇
  1999年   2814篇
  1998年   2652篇
  1997年   2484篇
  1996年   2210篇
  1995年   2181篇
  1994年   1954篇
  1993年   1705篇
  1992年   1451篇
  1991年   1358篇
  1990年   1103篇
  1989年   1068篇
  1988年   942篇
  1987年   787篇
  1986年   706篇
  1985年   1087篇
  1984年   944篇
  1983年   671篇
  1982年   795篇
  1981年   636篇
  1980年   515篇
  1979年   431篇
  1978年   320篇
  1977年   239篇
  1976年   216篇
  1975年   94篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra‐ and extracellular modifications are needed to make functional collagen molecules, intracellular post‐translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4‐hydroxylases, 3‐hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.  相似文献   
2.
3.
Bortezomib is a novel proteasome inhibitor, which has been successfully used to treat mantle cell lymphoma and multiple myeloma. However, the direct effects of bortezomib on acute promyelocytic leukaemia (APL) have not been fully investigated. In the present study, the WST-8 assay, western blotting, flow cytometry, monodansylcadaverine staining and transmission electron microscopy were performed. It was demonstrated that bortezomib treatment induced a time- and dose-dependent decrease in the viability of NB4 cells. Bortezomib treatment induced cell apoptosis in NB4 cells, as assessed by Annexin V/propidium iodide analysis, and the detection of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase, Bax and Bcl-2 expression. Furthermore, bortezomib treatment induced autophagy in NB4 cells, as indicated by autophagosome formation, p62 degradation, LC3-I to LC3-II conversion and formation of acidic autophagic vacuoles. Notably, autophagy induced by bortezomib was initiated prior to apoptosis. Inhibition of autophagy by knocking down Beclin-1 expression increased bortezomib-induced apoptosis in NB4 cells. Therefore, the present study revealed that the combination of bortezomib and autophagy inhibition may be a potential treatment strategy for APL.  相似文献   
4.
5.
6.
Gut bacteria and gut barrier plays important roles in body homeostasis. Ciprofloxacin (CPFX) is widely used to treat bacterial infections. However, whether high dosage of CPFX has side effects on gut barrier integrity is still unclear. Our results indicated that the High CPFX treatment (1 mg/ml) caused weight loss, nervousness, anorexia, and increased apoptosis cells in gut, but less influence was observed in the Low CPFX group (0.2 mg/ml). Meanwhile, the High CPFX treatment impaired tight junction molecules Ocln/ZO-1 level and down-regulated antibacterial genes expression (reg3γ, pla2g2α and defb1). Further, the High CPFX treatment increased pro-inflammatory cytokine IL-1β in intestinal tract, decreased IL-17A of duodenum but increased IL-17A of colon at day 37. In addition, the gut bacterial diversity and richness behaved significantly loss regarding CPFX treatment, especially in the High CPFX group during the experiment. Indole exhibited sharply decline in both Low and High CPFX groups at day 7, and the High CPFX mice needed longer time on restoring indole level. Meanwhile, CPFX treatment strongly decreased the concentrations of butyric acid and valeric acid at day 1. Correlation analysis indicated that the linked patterns between the key bacteria (families Bacteroidales_S247, Ruminococcaceae and Desulfovibrionaceae) and metabolites (indole and butyric acid) were disturbed via the CPFX treatment. In conclusion, the High CPFX treatment impaired the gut barrier with the evidence of reduced expression of tight junction proteins, increased apoptosis cells and inflammatory cells, decreased the bacterial diversity and composition, which suggesting a proper antibiotic-dosage use should be carefully considered in disease treatment.  相似文献   
7.
Objective Interferon-induced transmembrane protein 3(IFITM3) is an important member of the IFITM family. However, the molecular mechanisms underlying its antiviral action have not been completely elucidated. Recent studies on IFITM3, particularly those focused on innate antiviral defense mechanisms, have shown that IFITM3 affects the body's adaptive immune response. The aim of this study was to determine the contribution of IFITM3 proteins to immune control of influenza infection in vivo.Methods We performed proteomics, flow cytometry, and immunohistochemistry analysis and used bioinformatics tools to systematically compare and analyze the differences in natural killer(NK) cell numbers, their activation, and their immune function in the lungs of Ifitm3-/-and wild-type mice.Results Ifitm3-/-mice developed more severe inflammation and apoptotic responses compared to wild-type mice. Moreover, the NK cell activation was higher in the lungs of Ifitm3-/-mice during acute influenza infection.Conclusions Based on our results, we speculate that the NK cells are more readily activated in the absence of IFITM3, increasing mortality in Ifitm3-/-mice.  相似文献   
8.
Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry.TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2 h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed.In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their accumulation in brain cells could be dangerous to human health.  相似文献   
9.
AimsWe previously showed that the protective effects of endothelial progenitor cells (EPCs)‐released exosomes (EPC‐EXs) on endothelium in diabetes. However, whether EPC‐EXs are protective in diabetic ischemic stroke is unknown. Here, we investigated the effects of EPC‐EXs on diabetic stroke mice and tested whether miR‐126 enriched EPC‐EXs (EPC‐EXsmiR126) have enhanced efficacy.MethodsThe db/db mice subjected to ischemic stroke were intravenously administrated with EPC‐EXs 2 hours after ischemic stroke. The infarct volume, cerebral microvascular density (MVD), cerebral blood flow (CBF), neurological function, angiogenesis and neurogenesis, and levels of cleaved caspase‐3, miR‐126, and VEGFR2 were measured on day 2 and 14.ResultsWe found that (a) injected EPC‐EXs merged with brain endothelial cells, neurons, astrocytes, and microglia in the peri‐infarct area; (b) EPC‐EXsmiR126 were more effective than EPC‐EXs in decreasing infarct size and increasing CBF and MVD, and in promoting angiogenesis and neurogenesis as well as neurological functional recovery; (c) These effects were accompanied with downregulated cleaved caspase‐3 on day 2 and vascular endothelial growth factor receptor 2 (VEGFR2) upregulation till day 14.ConclusionOur results indicate that enrichment of miR126 enhanced the therapeutic efficacy of EPC‐EXs on diabetic ischemic stroke by attenuating acute injury and promoting neurological function recovery.  相似文献   
10.
《Journal of endodontics》2020,46(10):1455-1464
IntroductionThe aim of this study was to investigate whether mineral trioxide aggregate (MTA) can be modified with caffeic acid (CA) to form caffeic acid/mineral trioxide aggregate (CAMTA) cement and to evaluate its physicochemical and biological properties as well as its capability in immune suppression and angiogenesis.MethodsMTA was immersed in trishydroxymethyl aminomethane buffer with CA to allow coating onto MTA powders. X-ray diffractometry and tensile stress-strain tests were conducted to assess for physical characteristics of CAMTA and to evaluate for successful modification of MTA. Then, the CAMTA cement was immersed in simulated body fluid to evaluate its hydroxyapatite formation capabilities and Si release profiles. In addition, RAW 264.7 cells and human dental pulp stem cells were used to evaluate CAMTA’s immunosuppressive capabilities and cell responses, respectively. hDPSCs were also used to assess CAMTA’s angiogenic capabilities.ResultsThe X-ray diffractometry results showed that CA can be successfully coated onto MTA without disrupting or losing MTA’s original structural properties, thus allowing us to retain the initial advantages of MTA. CAMTA was shown to have higher mechanical properties compared with MTA and had rougher pitted surfaces, which were hypothesized to lead to enhanced adhesion, proliferation, and secretion of angiogenic- and odontogenic-related proteins. In addition, it was found that CAMTA was able to enhance hydroxyapatite formation and immunosuppressive capabilities compared with MTA.ConclusionsCAMTA cements were found to have improved physicochemical and biological characteristics compared with their counterpart. In addition, CAMTA cements had enhanced odontogenic, angiogenic, and immunosuppressive properties compared with MTA. All of the results of this study proved that CAMTA cements could be a biomaterial for future clinical applications and tissue engineering use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号