首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   250篇
妇产科学   2篇
基础医学   2篇
临床医学   8篇
内科学   17篇
神经病学   10篇
外科学   529篇
综合类   26篇
预防医学   6篇
中国医学   35篇
  2022年   21篇
  2021年   50篇
  2020年   51篇
  2019年   43篇
  2018年   41篇
  2017年   52篇
  2016年   46篇
  2015年   46篇
  2014年   65篇
  2013年   82篇
  2012年   39篇
  2011年   30篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
排序方式: 共有635条查询结果,搜索用时 31 毫秒
1.
The majority of hip fractures in the elderly are the result of a fall from standing or from a lower height. Current injury models focus mostly on femur strength while neglecting subject-specific loading. This article presents an injury modeling strategy for hip fractures related to sideways falls that takes subject-specific impact loading into account. Finite element models (FEMs) of the human body were used to predict the experienced load and the femoral strength in a single model. We validated these models for their predicted peak force, effective pelvic stiffness, and fracture status against matching ex vivo sideways fall impacts (n = 11) with a trochanter velocity of 3.1 m/s. Furthermore, they were compared to sideways impacts of volunteers with lower impact velocities that were previously conducted by other groups. Good agreement was found between the ex vivo experiments and the FEMs with respect to peak force (root mean square error [RMSE] = 10.7%, R2 = 0.85) and effective pelvic stiffness (R2 = 0.92, RMSE = 12.9%). The FEMs were predictive of the fracture status for 10 out of 11 specimens. Compared to the volunteer experiments from low height, the FEMs overestimated the peak force by 25% for low BMI subjects and 8% for high BMI subjects. The effective pelvic stiffness values that were derived from the FEMs were comparable to those derived from impacts with volunteers. The force attenuation from the impact surface to the femur ranged between 27% and 54% and was highly dependent on soft tissue thickness (R2 = 0.86). The energy balance in the FEMS showed that at the time of peak force 79% to 93% of the total energy is either kinetic or was transformed to soft tissue deformation. The presented FEMs allow for direct discrimination between fracture and nonfracture outcome for sideways falls and bridge the gap between impact testing with volunteers and impact conditions representative of real life falls. © 2019 American Society for Bone and Mineral Research.  相似文献   
2.
Prevalence of osteoporosis is more than 50% in older adults, yet current clinical methods for diagnosis that rely on areal bone mineral density (aBMD) fail to detect most individuals who have a fragility fracture. Bone fragility can manifest in different forms, and a “one-size-fits-all” approach to diagnosis and management of osteoporosis may not be suitable. High-resolution peripheral quantitative computed tomography (HR-pQCT) provides additive information by capturing information about volumetric density and microarchitecture, but interpretation is challenging because of the complex interactions between the numerous properties measured. In this study, we propose that there are common combinations of bone properties, referred to as phenotypes, that are predisposed to different levels of fracture risk. Using HR-pQCT data from a multinational cohort (n = 5873, 71% female) between 40 and 96 years of age, we employed fuzzy c-means clustering, an unsupervised machine-learning method, to identify phenotypes of bone microarchitecture. Three clusters were identified, and using partial correlation analysis of HR-pQCT parameters, we characterized the clusters as low density, low volume, and healthy bone phenotypes. Most males were associated with the healthy bone phenotype, whereas females were more often associated with the low volume or low density bone phenotypes. Each phenotype had a significantly different cumulative hazard of major osteoporotic fracture (MOF) and of any incident osteoporotic fracture (p < 0.05). After adjustment for covariates (cohort, sex, and age), the low density followed by the low volume phenotype had the highest association with MOF (hazard ratio = 2.96 and 2.35, respectively), and significant associations were maintained when additionally adjusted for femoral neck aBMD (hazard ratio = 1.69 and 1.90, respectively). Further, within each phenotype, different imaging biomarkers of fracture were identified. These findings suggest that osteoporotic fracture risk is associated with bone phenotypes that capture key features of bone deterioration that are not distinguishable by aBMD. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   
3.
Inflammation, an important contributory factor of muscle and bone aging, is potentially modulated by diet. This study examined the associations of dietary inflammatory index (DII) score with musculoskeletal parameters and related disease outcomes in 3995 community-dwelling Chinese men and women aged ≥65 years in Hong Kong. DII score at baseline was estimated from a food frequency questionnaire. Bone mineral density (BMD) and muscle mass estimated by dual-energy X-ray absorptiometry (DXA), hand grip strength, gait speed, and chair stand test were measured at baseline, year 4, and year 14. The associations of DII score with the longitudinal changes of musculoskeletal parameters, and incidence of osteoporosis, sarcopenia, and fractures were examined by using general linear model, multinomial logistic regression model, and Cox proportional hazards regression model, respectively. After multiple adjustments, each tertile increase in DII score in men was associated with 0.37 (95% confidence interval [CI], 0.10–0.64) kg loss in grip strength and 0.02 (95% CI, 0.01–0.03) m/s loss in gait speed over 4 years. In men, the highest tertile of DII was associated with a higher risk of incident fractures, with adjusted and competing death adjusted hazard ratio (HR) (95% CI) of 1.56 (1.14–2.14) and 1.40 (1.02–1.91), respectively. In women, DII score was not significantly associated with any muscle-related outcomes or incidence of fracture, but a significant association between higher DII score and risk of osteoporosis at year 14 was observed, with the highest tertile of DII score having adjusted odds ratio (OR) (95% CI) of 1.90 (1.03–3.52). In conclusion, pro-inflammatory diet consumption promoted loss of muscle strength and physical function, and increased risk of fractures in older Chinese men. Pro-inflammatory diets had no significant association with muscle related outcomes but increased the long-term risk of osteoporosis in older Chinese women. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   
4.
提要报告了55例儿童桡骨骨折,观察发现该病挠骨头变位情况并不完全一致,据此提了分为外侧型、外后侧型和外前侧型3型的新的分型方法。采用相应整复手法,提高了复位满意率。本组优良率达85%,其中外侧型复位较易,优良率为93%;外后侧型次之;外前侧型复位困难,优良率为70%。  相似文献   
5.
Smokers are at a higher risk of delayed union or nonunion after fracture repair. Few specific interventions are available for prevention because the molecular mechanisms that result in these negative sequelae are poorly understood. Murine models that mimic fracture healing in smokers are crucial in further understanding the local cellular and molecular alterations during fracture healing caused by smoking. We exposed three murine strains, C57BL/6J, 129X1/SvJ, and BALB/cJ, to cigarette smoke for 3 months before the induction of a midshaft transverse femoral osteotomy. We evaluated fracture healing 4 weeks after the osteotomy using radiography, micro-computed tomography (μCT), and biomechanical testing. Radiographic analysis demonstrated a significant decrease in the fracture healing capacity of smoking 129X1/SvJ mice. μCT results showed delayed remodeling of fracture calluses in all three strains after cigarette smoke exposure. Biomechanical testing indicated the most significant impairment in the functional properties of 129X1/SvJ in comparison with C57BL/6J and BALB/cJ mice after cigarette smoke exposure. Thus, the 129X1/SvJ strain is most suitable in simulating smoking-induced impaired fracture healing. Furthermore, in smoking 129X1/SvJ murine models, we investigated the molecular and cellular alterations in fracture healing caused by cigarette smoking using histology, flow cytometry, and multiplex cytokine/chemokine analysis. Histological analysis showed impaired chondrogenesis in cigarette smoking. In addition, the important reparative cell populations, including skeletal stem cells and their downstream progenitors, demonstrated decreased expansion after injury as a result of cigarette smoking. Moreover, significantly increased pro-inflammatory mediators and the recruitment of immune cells in fracture hematomas were demonstrated in smoking mice. Collectively, our findings demonstrate the significant cellular and molecular alterations during fracture healing impaired by smoking, including disrupted chondrogenesis, aberrant skeletal stem and progenitor cell activity, and a pronounced initial inflammatory response. © 2020 American Society for Bone and Mineral Research (ASBMR).  相似文献   
6.
Dual-energy X-ray absorptiometry (DXA)-based bone mineral density testing is standard to diagnose osteoporosis to detect individuals at high risk of fracture. A radiomics approach to extract quantifiable texture features from DXA hip images may improve hip fracture prediction without additional costs. Here, we investigated whether bone radiomics scores from DXA hip images could improve hip fracture prediction in a community-based cohort of older women. The derivation set (143 women who sustained hip fracture [mean age 73 years, time to fracture median 2.1 years] versus 290 age-matched women [mean age 73 years] who did not sustain hip fracture during follow-up [median 5.5 years]) were split into the train set (75%) and the test set (25% hold-out set). Among various models using 14 selected features out of 300 texture features mined from DXA hip images in the train set, random forest model was selected as the best model to build a bone radiomics score (range 0 to 100) based on the performance in the test set. In a community-based cohort (2029 women, mean age 71 years) as the clinical validation set, the bone radiomics score was calculated using a model fitted in the train set. A total of 34 participants (1.7%) sustained hip fracture during median follow-up of 5.4 years (mean bone radiomics score 40 ± 16 versus 28 ± 12 in non-fractured, p < 0.001). A one-point bone radiomics score increment was associated with a 4% elevated risk of incident hip fracture (adjusted hazard ratio [aHR] = 1.04, p = 0.001) after adjustment for age, body mass index (BMI), previous history of fracture, and femoral neck T-score, with improved model fit when added to covariates (likelihood ratio chi-square 10.74, p = 0.001). The association between bone radiomics score with incident hip fracture remained robust (aHR = 1.06, p < 0.001) after adjustment for FRAX hip fracture probability. Bone radiomics scores estimated from texture features of DXA hip images have the potential to improve hip fracture prediction. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   
7.
8.
The remodeling of the extracellular matrix is a central function in endochondral ossification and bone homeostasis. During secondary fracture healing, vascular invasion and bone growth requires the removal of the cartilage intermediate and the coordinate action of the collagenase matrix metalloproteinase (MMP)-13, produced by hypertrophic chondrocytes, and the gelatinase MMP-9, produced by cells of hematopoietic lineage. Interfering with these MMP activities results in impaired fracture healing characterized by cartilage accumulation and delayed vascularization. MMP-10, Stromelysin 2, a matrix metalloproteinase with high homology to MMP-3 (Stromelysin 1), presents a wide range of putative substrates identified in vitro, but its targets and functions in vivo and especially during fracture healing and bone homeostasis are not well defined. Here, we investigated the role of MMP-10 through bone regeneration in C57BL/6 mice. During secondary fracture healing, MMP-10 is expressed by hematopoietic cells and its maximum expression peak is associated with cartilage resorption at 14 days post fracture (dpf). In accordance with this expression pattern, when Mmp10 is globally silenced, we observed an impaired fracture-healing phenotype at 14 dpf, characterized by delayed cartilage resorption and TRAP-positive cell accumulation. This phenotype can be rescued by a non-competitive transplant of wild-type bone marrow, indicating that MMP-10 functions are required only in cells of hematopoietic linage. In addition, we found that this phenotype is a consequence of reduced gelatinase activity and the lack of proMMP-9 processing in macrophages. Our data provide evidence of the in vivo function of MMP-10 during endochondral ossification and defines the macrophages as the lead cell population in cartilage removal and vascular invasion. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   
9.
Osteoporosis is a systemic skeletal disease characterized by low bone mass and bone structural deterioration that may result in fragility fractures. Use of bone imaging modalities to accurately predict fragility fractures is always an important issue, yet the current gold standard of dual-energy X-ray absorptiometry (DXA) for diagnosis of osteoporosis cannot fully satisfy this purpose. The latest high-resolution peripheral quantitative computed tomography (HR-pQCT) is a three-dimensional (3D) imaging device to measure not only volumetric bone density, but also the bone microarchitecture in a noninvasive manner that may provide a better fracture prediction power. This systematic review and meta-analysis was designed to investigate which HR-pQCT parameters at the distal radius and/or distal tibia could best predict fragility fractures. A systematic literature search was conducted in Embase, PubMed, and Web of Science with relevant keywords by two independent reviewers. Original clinical studies using HR-pQCT to predict fragility fractures with available full text in English were included. Information was extracted from the included studies for further review. In total, 25 articles were included for the systematic review, and 16 articles for meta-analysis. HR-pQCT was shown to significantly predict incident fractures and/or major osteoporotic fractures (MOFs). Of all the HR-pQCT parameters, our meta-analysis revealed that cortical volumetric bone mineral density (Ct.vBMD), trabecular thickness (Tb.Th), and stiffness were better predictors. Meanwhile, HR-pQCT parameters indicated better performance in predicting MOFs than incident fractures. Between the two standard measurement sites of HR-pQCT, the non-weight-bearing distal radius was a more preferable site than distal tibia for fracture prediction. Furthermore, most of the included studies were white-based, whereas very few studies were from Asia or South America. These regions should build up their densitometric databases and conduct related prediction studies. It is expected that HR-pQCT can be used widely for the diagnosis of osteoporosis and prediction of future fragility fractures. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   
10.
A healthy diet is essential to attain genetically determined peak bone mass and maintain optimal skeletal health across the adult lifespan. Despite the importance of nutrition for bone health, many of the nutritional requirements of the skeleton across the lifespan remain underexplored, poorly understood, or controversial. With increasingly aging populations, combined with rapidly changing diets and lifestyles globally, one anticipates large increases in the prevalence of osteoporosis and incidence of osteoporotic fractures. Robust, transparent, and reproducible nutrition research is a cornerstone for developing reliable public health recommendations to prevent osteoporosis and osteoporotic fractures. However, nutrition research is often criticized or ignored by healthcare professionals due to the overemphasis of weak science, conflicting, confusing or implausible findings, industry interests, common misconceptions, and strong opinions. Conversely, spurious research findings are often overemphasized or misconstrued by the media or prominent figures especially via social media, potentially leading to confusion and a lack of trust by the general public. Recently, reforms of the broader discipline of nutrition science have been suggested and promoted, leading to new tools and recommendations to attempt to address these issues. In this perspective, we provide a brief overview of what has been achieved in the field on nutrition and bone health, focusing on osteoporosis and osteoporotic fractures. We discuss what we view as some of the challenges, including inherent difficulties in assessing diet and its change, disentangling complex interactions between dietary components and between diet and other factors, selection of bone-related outcomes for nutrition studies, obtaining evidence with more unbiased designs, and perhaps most importantly, ensuring the trust of the public and healthcare professionals. This perspective also provides specific recommendations and highlights new developments and future opportunities for scientists studying nutrition and bone health. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号