首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础医学   1篇
神经病学   3篇
  2020年   1篇
  2008年   1篇
  1999年   1篇
  1992年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Synapsins are a well-characterized class of phosphoproteins found at synapses in the mammalian nervous system. One member of this family, synapsin I, has been extensively studied and shown to associate in a phosphorylation-dependent manner with both small synaptic vesicles and cytoskeletal elements. Though the characteristics of synapsin I suggest an important function in synaptic transmission, its definitive role is still in question. In an effort to find a model system in which to test directly the function of synapsin I, we have looked in the nervous system of the marine mollusc Aplysia californica for synapsin I-like antigens (SILA). Light microscope immunocytochemical studies using polyclonal and monoclonal antibodies to bovine brain synapsin I demonstrate Aplysia SILA in neuronal somata, in the neuropil, and at some identified synapses. Though SILA were exclusively associated with neuronal structures in Aplysia, the pattern of staining suggested that they are not present at all synaptic terminals. This interpretation was corroborated by ultrastructural studies in which SILA were present at some synaptic terminals but absent, or in low abundance, in adjacent terminals. In axons, SILA were associated with vesicles of 120-150 nm diameter, as well as with filamentous structures. Biochemical studies identified small amounts of SILA of 40 and 50 kD molecular weight that are recognized by several antibodies to mammalian synapsin I, and are acid extractable, collagenase-sensitive phosphoproteins; these are criteria used to define synapsin I homologues in other species. Our studies indicate that SILA are present in neurons in Aplysia californica but suggested that they represent only a small percentage of the total protein within the nervous system.  相似文献   
2.
Various proteins regulating neurotransmission release and synaptic vesicle exocytosis have been implicated in axonal elongation and synaptic maturation. In the present study, immunohistochemistry to the presynaptic membrane proteins syntaxin-I and synaptosomal-associated protein of 25 kDa (SNAP-25) synaptic vesicle-associated proteins synaptophysin and synapsin-I and the neuronal maturation and axonal growth-related protein GAP-43, has been carried out in the normal developing cerebellum and following a single dose of ionizing radiation (2 Gy gamma-rays) at postnatal day 1. Our aim has been to learn about the morphological and possible functional modalities that occur during the progression of neuronal connectivity in normal and abnormal development. Expression of all these proteins is associated with the arrival of afferents in the subcortical white matter and with the maturation of the internal granule cell layer and molecular layer during normal development. In addition, SNAP-25 and GAP-43 are strongly expressed in granule cells of the external granule cell layer, thus suggesting that these proteins are involved in cell elongation of granule cells. Apoptosis appears at 3 h and peaks at 6 h following ionizing radiation. Radiation-induced apoptosis in the external granule cell layer produces a transient decrease in the expression of SNAP-25 and GAP-43 in the external granule cell layer. The external granule cell layer recovers at 48 h and external granule cells of proliferating cells also express SNAP-25 and GAP-43, thus indicating that proliferating cells in this layer are equipped with proteins involved in cell elongation. Furthermore, expression of synaptophysin, synapsin-I, syntaxin-I and SNAP-25 is the same in the cerebellum of irradiated and normal rats from this time to adulthood (3 months). These results point to the likelihood that recovery of the cerebellar cortex occurs following a single exposure of ionizing radiation during postnatal development.  相似文献   
3.
Mood disorders are the most common psychiatric disorders. Although the mechanisms implicated in the genesis of mood disorders are still unclear, stress is known to predispose to depression, and recently, studies have related hippocampal neurogenesis and apoptosis to depression. In the present study we first examined the balance between cell birth-death in the hippocampus and subventricular zone (SVZ) of pre-pubertal and adult rats subjected to chronic-mild-stress (CMS). CMS led to increased corticosterone secretion and induced depressive-like symptoms (assessed in the forced-swimming test); these endocrine and behavioral effects were paralleled by decreased hippocampal, but not SVZ, cell proliferation/differentiation and by increased apoptotic rate. In order to determine if lithium, a known mood stabilizer with antidepressant properties, could prevent the stress-induced events, we analyzed the same parameters in a group of rats treated with lithium during the stress exposure period (CMS+Li) and observed that the hormonal, behavioral and cell turnover effects of CMS were abrogated in these animals. Subsequently, to search for possible pathways through which CMS and lithium influence behavior, cell fate and synaptic plasticity, we analyzed the expression of glycogen-synthase-kinase-3beta (GSK-3beta), as well as some of its downstream targets (B-cell-CLL/lymphoma2-associated athanonege (BAG-1) and synapsin-I). CMS increased GSK-3beta and decreased synapsin-I and BAG-1 expression in the hippocampus. Interestingly, co-administration of lithium precluded the CMS-induced effects in GSK-3beta, synapsin-I and BAG-1 expression. Our observation that specific inhibition of this kinase with AR-A014418 blocked the effects of CMS in depressive-like behavior and in BAG-1 and synapsin-I expression confirmed the involvement of the GSK-3beta pathway in stress-induced effects. In summary, these results reveal that lithium, by regulating the activity of GSK-3beta, prevents the deleterious effects of stress on behavior and cellular functions.  相似文献   
4.
目的 探讨白桦脂醇对阿尔茨海默病(AD)小鼠的学习记忆功能的干预作用及海马突触功能相关蛋白表达的影响,为探索治疗AD提供新的可能。方法 采用白桦脂醇干预APP/PS1双转基因痴呆模型小鼠,将小鼠随机分为模型组、药物高剂量组和低剂量组,C57BL/6J健康小鼠为对照组。通过行为学观察学习记忆能力、在体电生理记录海马神经元的生物电、TUNEL法检测神经元凋亡、Realtime PCR法检测PSD-95和Synapsin-I水平。结果 水迷宫检测结果发现白桦脂醇能改善模型小鼠认知功能障碍;电生理检测AD模型组长时程增强(LTP)幅值低于对照组,经过白桦脂醇干预治疗后,白桦脂醇各组LTP幅值较AD模型组升高;AD模型组神经元凋亡率显著高于对照组,经过白桦脂醇干预治疗后凋亡率下降;AD小鼠模型海马区PSD-95和Synapsin-I表达下降,但经白桦脂醇干预后其表达上升。结论 白桦脂醇通过使海马PSD-95和Synapsin-I的表达增加,发挥对APP/PS1双转基因痴呆模型小鼠认知功能的保护,使海马长时程增强。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号