首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   7篇
基础医学   11篇
口腔科学   2篇
内科学   29篇
皮肤病学   1篇
神经病学   17篇
外科学   6篇
预防医学   26篇
  2022年   6篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
1.
Variant Creutzfeldt-Jakob disease (vCJD) has been reported in 12 countries. We hypothesized that a common strain of agent is responsible for all vCJD cases, regardless of geographic origin. To test this hypothesis, we inoculated strain-typing panels of wild-type mice with brain material from human vCJD case-patients from France, the Netherlands, Italy, and the United States. Mice were assessed for clinical disease, neuropathologic changes, and glycoform profile; results were compared with those for 2 reference vCJD cases from the United Kingdom. Transmission to mice occurred from each sample tested, and data were similar between non-UK and UK cases, with the exception of the ranking of mean clinical incubation times of mouse lines. These findings support the hypothesis that a single strain of infectious agent is responsible for all vCJD infections. However, differences in incubation times require further subpassage in mice to establish any true differences in strain properties between cases.  相似文献   
2.
The basis for life is the ability of the cell to maintain ion gradients across biological membranes. Such gradients are created by specific membrane-bound ion pumps [adenosine triphosphatases (ATPases)]. According to physicochemical rules passive forces equilibrate (dissipate) ion gradients. The cholesterol/phospholipid ratio of the membrane and the degree of saturation of phospholipid fatty acids are important factors for membrane molecular order and herewith a determinant of the degree of non-specific membrane leakiness. Other operative principles, i.e. specific ion channels can be opened and closed according to mechanisms that are specific to the cell. Certain compounds called ionophores can be integrated in the plasma membrane and permit specific inorganic ions to pass. Irrespective of which mechanism ions leak across the plasma membrane the homeostasis may be kept by increasing ion pumping (ATPase activity) in an attempt to restore the physiological ion gradient. The energy source for this work seems to be glycolytically derived ATP formation. Thus an increase in ion pumping is reflected by increased ATP hydrolysis and rate of glycolysis. This can be measured as an accumulation of breakdown products of ATP and end-products of anaerobic glycolysis (lactate). In certain disease entities, the balance between ATP formation and ion pumping may be disordered resulting in a decrease in inter alia (i.a.) cellular energy charge, and an increase in lactate formation and catabolites of adenylates. Cardiac syndrome X is proposed to be due to an excessive leakage of potassium ions, leading to electrocardiographic (ECG) changes, abnormal Tl-scintigraphy of the heart and anginal pain (induced by adenosine). Cocksackie B3 infections, a common agent in myocarditis might also induce an ionophore-like effect. Moreover, Alzheimer's disease is characterized by the formation of extracellular amyloid deposits in the brain of patients. Perturbation of cellular membranes by the amyloid peptide during the development of Alzheimer's disease is one of several mechanisms proposed to account for the toxicity of this peptide on neuronal membranes. We have studied the effects of the peptide and fragments thereof on 45Ca2+-uptake in human erythrocytes and the energetic consequences. Treatment of erythrocytes with the beta 1-40 peptide, results in qualitatively similar nucleotide pattern and decrease of energy charge as the treatment with Ca2+-ionophore A23187. Finally, in recent studies we have revealed and published in this journal that a rare condition, Tarui's disease or glycogenosis type VII, primarily associated with a defect M-subunit of phosphofructokinase, demonstrates as a cophenomenon an increased leak of Ca2+ into erythrocytes.  相似文献   
3.
Susceptibility to prion infection involves interplay between the prion strain and host genetics, but expression of the host-encoded cellular prion protein is a known prerequisite. Here we consider human embryonic stem cell (hESC) susceptibility by characterizing the genetics and expression of the normal cellular prion protein and by examining their response to acute prion exposure. Seven hESC lines were tested for their prion protein gene codon 129 genotype and this was found to broadly reflect that of the normal population. hESCs expressed prion protein mRNA, but only low levels of prion protein accumulated in self-renewing populations. Following undirected differentiation, up-regulation of prion protein expression occurred in each of the major embryonic lineages. Self-renewing populations of hESCs were challenged with infectious human and animal prions. The exposed cells rapidly and extensively took up this material, but when the infectious source was removed the level and extent of intracellular disease-associated prion protein fell rapidly. In the absence of a sufficiently sensitive test for prions to screen therapeutic cells, and given the continued use of poorly characterized human and animal bioproducts during hESC derivation and cultivation, the finding that hESCs rapidly take up and process abnormal prion protein is provocative and merits further investigation.  相似文献   
4.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy, or prion disease, that affects deer, elk, and moose. Human susceptibility to CWD remains unproven despite likely exposure to CWD-infected cervids. We used 2 nonhuman primate species, cynomolgus macaques and squirrel monkeys, as human models for CWD susceptibility. CWD was inoculated into these 2 species by intracerebral and oral routes. After intracerebral inoculation of squirrel monkeys, 7 of 8 CWD isolates induced a clinical wasting syndrome within 33–53 months. The monkeys’ brains showed spongiform encephalopathy and protease-resistant prion protein (PrPres) diagnostic of prion disease. After oral exposure, 2 squirrel monkeys had PrPres in brain, spleen, and lymph nodes at 69 months postinfection. In contrast, cynomolgus macaques have not shown evidence of clinical disease as of 70 months postinfection. Thus, these 2 species differed in susceptibility to CWD. Because humans are evolutionarily closer to macaques than to squirrel monkeys, they may also be resistant to CWD.  相似文献   
5.
6.
7.
Prion diseases are fatal transmissible diseases, where conversion of the endogenous prion protein (PrPC) into a misfolded isoform (PrPSc) leads to neurodegeneration. Microglia, the immune cells of the brain, are activated in neurodegenerative disorders including prion diseases; however, their impact on prion disease pathophysiology is unclear with both beneficial PrPSc‐clearing and detrimental potentially neurotoxic effects. Moreover, monocytes entering the brain from the periphery during disease course might add to disease pathophysiology. Here, the degree of microglia activation in the brain of prion infected mice with and without an additional intraperitoneal retrovirus infection was studied. Peripheral murine retrovirus infection leads to activation of parenchymal microglia without recruitment of monocytes. This activation correlated with transient clearance or delay in accumulation of infectious prions specifically from the brain at early time points in the diseases course. Microglia expression profiling showed upregulation of genes involved in protein degradation coinciding with prion clearance. This enforces a concept where microglia act beneficial in prion disease if adequately activated. Once microglia activation has ceased, prion disease reemerges leading to disease kinetics undistinguishable from the situation in prion‐only infected mice. This might be caused by the loss of microglial homeostatic function at clinical prion disease.  相似文献   
8.
《Amyloid》2013,20(4):285-290
The amyloid field has, over the past few years, experienced a rapid growth in a number of areas. The intent of this meeting was to examine the complete amyloid pathway from crystal structures to animal models and the creation of novel methods of treating these disorders. This involved bringing together different disciplines, ideas and approaches which examined amyloidogenic proteins from unique perspectives. The first keynote address was given by D. Cleveland (UC San Diego) who reviewed the aggregation pathway of superoxide dismutase (SOD) as it relates to amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease. This address provided insights into all aspects of the abnormal accumulation of SOD from the effects of mutations on protein folding to the recapitulation of these deposits in transgenic mice. The second keynote was delivered by J. Kelly (Scripps) who dealt with the complexities of amyloid assembly as seen from a protein folding viewpoint and addressed the question of whether or not it is possible to design specific inhibitory compounds. Using the transthyretin (TTR) model, it was demonstrated that aggregation could be monitored by techniques such as utracentrifugation and that molecules which maintained a stable native conformation were capable of reducing fibril formation. The combination of these two addresses encapsulated the overall goal of this meeting.  相似文献   
9.
Although amyloid has usually been considered a pathological structure, growing evidence indicates that amyloid may also be a productive part of cell biology contributing to normal physiology. In fact, amyloid formation seems to be an intrinsic propensity of polypeptides in general and the amyloid β‐fold an evolutionary highly conserved structure. Functional amyloids have been found in a wide range of organisms, from bacteria to mammals, with functions as diverse as biofilm formation, development of aerial structures, scaffolding, regulation of melanin synthesis, epigenetic control of polyamines and information transfer. Obviously, organisms have evolved taking advantage of the canonical amyloid β‐sheet fold, a conformation that possesses both high resistance to proteolysis, self‐replicative properties and capability to function as a molecular memory.  相似文献   
10.
The transmission of chronic wasting disease (CWD) has largely been attributed to contact with infectious prions shed in excretions (saliva, urine, feces, blood) by direct animal-to-animal exposure or indirect contact with the environment. Less-well studied has been the role that mother-to-offspring transmission may play in the facile transmission of CWD, and whether mother-to-offspring transmission before birth may contribute to the extensive spread of CWD. We thereby focused on a population of free-ranging white-tailed deer from West Virginia, USA, in which CWD has been detected. Fetal tissues, ranging from 113 to 158 days of gestation, were harvested from the uteri of CWD+ dams in the asymptomatic phase of infection. Using serial protein misfolding amplification (sPMCA), we detected evidence of prion seeds in 7 of 14 fetuses (50%) from 7 of 9 pregnancies (78%), with the earliest detection at 113 gestational days. This is the first report of CWD detection in free ranging white-tailed deer fetal tissues. Further investigation within cervid populations across North America will help define the role and impact of mother-to-offspring vertical transmission of CWD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号