首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10744篇
  免费   667篇
  国内免费   328篇
耳鼻咽喉   53篇
儿科学   44篇
妇产科学   32篇
基础医学   1963篇
口腔科学   98篇
临床医学   700篇
内科学   1971篇
皮肤病学   46篇
神经病学   2396篇
特种医学   241篇
外科学   394篇
综合类   1137篇
预防医学   535篇
眼科学   91篇
药学   1604篇
  8篇
中国医学   293篇
肿瘤学   133篇
  2024年   13篇
  2023年   94篇
  2022年   176篇
  2021年   312篇
  2020年   231篇
  2019年   234篇
  2018年   229篇
  2017年   186篇
  2016年   206篇
  2015年   228篇
  2014年   403篇
  2013年   508篇
  2012年   423篇
  2011年   484篇
  2010年   482篇
  2009年   461篇
  2008年   520篇
  2007年   505篇
  2006年   466篇
  2005年   434篇
  2004年   472篇
  2003年   417篇
  2002年   323篇
  2001年   284篇
  2000年   264篇
  1999年   269篇
  1998年   335篇
  1997年   306篇
  1996年   239篇
  1995年   229篇
  1994年   234篇
  1993年   192篇
  1992年   163篇
  1991年   181篇
  1990年   152篇
  1989年   118篇
  1988年   117篇
  1987年   105篇
  1986年   96篇
  1985年   120篇
  1984年   103篇
  1983年   85篇
  1982年   97篇
  1981年   80篇
  1980年   45篇
  1979年   30篇
  1978年   22篇
  1977年   22篇
  1976年   18篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
文题释义: 细胞膜片技术:是在体外接种培养高密度的细胞,使其相互融合生长至100%而形成的透明致密膜状物。该技术不需要胰酶消化即可收集细胞,因此保留了大量的胞外基质、细胞间连接以及细胞-基质连接等结构。目前细胞膜片技术已成为组织工程领域的研究热点,已被推广应用于牙周膜、角膜、心脏、软骨、食管等多种组织器官修复。 成骨细胞:主要由内外骨膜和间充质始祖细胞分化而来,在复杂的骨形成过程中发挥着主要的功能,承担着骨基质的合成、分泌和矿化。骨髓间充质干细胞具有多向分化潜能,能定向分化为成骨细胞,其成骨分化过程可受多种因素的影响,如细胞因子的调控、遗传因素和激素水平等。背景:现阶段骨形态发生蛋白2和碱性成纤维生长因子2对骨髓间充质干细胞膜片增殖、成骨分化的影响和作用机制还尚未可知,如何将生长因子与组织工程细胞膜片技术相整合,最终将其用于骨缺损修复具有重要意义。 目的:探讨单独及联合应用骨形态发生蛋白2和碱性成纤维生长因子2对骨髓间充质干细胞膜片增殖和成骨分化的影响。 方法:体外分离培养鉴定SD大鼠骨髓间充质干细胞并构建细胞膜片,选用不同质量浓度的骨形态发生蛋白2和碱性成纤维生长因子2单独及联合诱导骨髓间充质干细胞膜片,CCK-8法结合碱性磷酸酶活性检测确定2种因子促进膜片增殖和成骨分化的最佳有效质量浓度;然后对骨髓间充质干细胞膜片进行成骨诱导,通过大体及显微镜观察、Vonkossa染色、茜素红染色、RT-PCR检测相关成骨标志物来评估诱导效果。 结果与结论:单独应用骨形态发生蛋白2可增强骨髓间充质干细胞膜片的碱性磷酸酶活性,最佳质量浓度为100 μg/L(P < 0.001),单独应用碱性成纤维生长因子2能加速骨髓间充质干细胞膜片的增殖,最佳质量浓度为20 μg/L(P < 0.001),而联合应用既可以促进膜片增殖又能提高其碱性磷酸酶活性(P < 0.001);经成骨诱导后,4组膜片在形态学上无明显差异,均能诱导骨髓间充质干细胞膜片的成骨分化,其中联合组钙结节最明显(P < 0.001),可显著促进膜片晚期成骨分化并抑制其早期成骨分化,具有明显的协同促进作用(P < 0.001)。结果表明,骨形态发生蛋白2和碱性成纤维生长因子2联合应用时具有协同作用,既可以促进骨髓间充质干细胞膜片增殖,又能显著增强其成骨诱导能力。ORCID: 0000-0003-1918-579X(何惠宇) 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程  相似文献   
2.
A combination of various therapeutic approaches has emerged as a promising strategy for cancer treatment. A safe and competent nano-delivery system is thus in urgent demand to facilitate the simultaneous transport of various therapeutic agents to cancer cells and a tumor region to achieve synergistic effect. Gold nanoparticles (GNPs) and mesoporous silica nanoparticle (MSNs) were fabricated herein as potential candidates for drug delivery. Serving as gatekeepers, GNPs (5 nm in diameter) were attached onto the amino-functionalized MSNs (denoted as NMSNs) via a relatively weak gold–nitrogen bonding. The resulting nanohybrids (denoted as GCMSNs) were uptaken by cells, and the detachment of GNPs and subsequent intracellular drug release from NMSNs were achieved by competitive binding of intracellular glutathione to GNPs. In addition to the function of gatekeeping, GNPs also play another role as the oxidative stress elicitor. Our in vitro studies revealed that GCMSNs induced higher oxidative stress in lung cancer cells (A549) than in normal cells (3T3-L1). This growth inhibitory effect found in the cancer cells was likely induced by mitochondria dysfunction originated from the GCMSN-induced, oxidative stress-triggered mitochondria-mediated autophagy. The redox-responsive nanohybrids were further loaded with camptothecin and the intensified synergistic therapeutic effects were observed associated with combined chemotherapy and oxidative stress strategy. The results clearly demonstrate that such unique nanohybrids hold great promise for selective and effective cancer treatments.  相似文献   
3.
4.
《Brain stimulation》2020,13(2):507-516
BackgroundTranscranial direct current stimulation (tDCS), a non-invasive brain stimulation technique able to transiently modulate brain activity, is surging as one of the most promising therapeutic solutions in many neurological and psychiatric disorders. However, profound limitations exist in current placebo (sham) protocols that limit single- and double-blinding, especially in non-naïve subjects.ObjectiveTo ensure better blinding and strengthen reliability of tDCS studies and trials, we tested a new optimization algorithm aimed at creating an “active” sham tDCS condition (ActiSham hereafter) capable of inducing the same scalp sensations perceived during real stimulation while preventing currents from reaching the cortex and cause changes in brain excitability.MethodsA novel model-based multielectrode technique — optimizing the location and currents of a set of small electrodes placed on the scalp — was used to control the relative amount of current delivered transcranially in real and placebo multichannel tDCS conditions. The presence, intensity and localization of scalp sensations during tDCS was evaluated by means of a specifically designed questionnaire administered to the participants. We compared blinding ratings by directly addressing subjects’ ability to discriminate across conditions for both traditional (Bifocal-tDCS and Sham, using sponge electrodes) and our novel multifocal approach (both real Multifocal-tDCS and ActiSham). Changes in corticospinal excitability were monitored based on Motor Evoked Potentials (MEPs) recorded via concurrent Transcranial Magnetic Stimulation (TMS) and electromyography (EMG).ResultsParticipants perceived Multifocal-tDCS and ActiSham similarly in terms of both localization and intensity of scalp sensations, whereas traditional Bifocal stimulation was rated as more painful and annoying compared to its Sham counterpart. Additionally, differences in scalp localization were reported for active/sham Bifocal-tDCS, with Sham tDCS inducing more widespread itching and burning sensations. As for MEPs amplitude, a main effect of stimulation was found when comparing Bifocal-Sham and ActiSham (F(1,13) = 6.67, p = .023), with higher MEPs amplitudes after the application of Bifocal-Sham.ConclusionsCompared to traditional Bifocal-tDCS, ActiSham offers better participants’ blinding by inducing very similar scalp sensations to those of real Multifocal tDCS both in terms of intensity and localization, while not affecting corticospinal excitability.  相似文献   
5.
《Brain stimulation》2022,15(2):337-351
BackgroundAbnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI.MethodsSixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10–10), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity.ResultsCompared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43 mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = ?0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between stimulation sites.ConclusionThis study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.  相似文献   
6.
《Saudi Pharmaceutical Journal》2022,30(11):1665-1671
5-fluorouracil (5FU) is widely used to treat colorectal cancer (CC) and its main mechanisms of anticancer action are through generation of ROS which often result in inflammation. Here, we test the effect of Lycopene against 5FU in Caco2 cell line. Caco2 cells were exposed to 3 µg/ml of 5FU alone or with 60, 90, 120 µg/ml of lycopene. This was followed by assessment of cytotoxicity, oxidative stress, and gene expression of inflammatory genes. Our findings showed that Lycopene and 5FU co-exposure induced dose-dependent cytotoxic effect without compromising the membrane integrity based on the LDH assay. Lycopene also significantly enhanced 5FU-induced SOD activity and GSH level compared to control for all mixture concentrations (p < 0.01). Lycopene alone and combination with 5FU-induced expression of IL-1β, TNF-α, and IL-6. Furthermore, IFN-γ expression was significantly enhanced by only mixture of lycopene (90 µg/ml) and 5FU (p < 0.05). In conclusion, Lycopene supplementation with 5FU therapy resulted in improvement in antioxidant parameters such as catalase and GSH levels giving the cell capacity to cope with 5FU-mediated oxidative stress. Lycopene also enhanced IFN-γ expression in the presence of 5FU, which may activate antitumor effects further enhancing the cancer killing effect of 5FU.  相似文献   
7.
8.
9.
《Brain stimulation》2020,13(5):1159-1167
BackgroundInhibitory control refers to a central cognitive capacity involved in the interruption and correction of actions. Dysfunctions in these cognitive control processes have been identified as major maintaining mechanisms in a range of mental disorders such as ADHD, binge eating disorder, obesity, and addiction. Improving inhibitory control by transcranial direct current stimulation (tDCS) could ameliorate symptoms in a broad range of mental disorders.ObjectiveThe primary aim of this pre-registered meta-analysis was to investigate whether inhibitory control can be improved by tDCS in healthy and clinical samples. Additionally, several moderator variables were investigated.MethodsA comprehensive literature search was performed on PubMed/MEDLINE database, Web of Science, and Scopus. To achieve a homogenous sample, only studies that assessed inhibitory control in the go-/no-go (GNG) or stop-signal task (SST) were included, yielding a total of 75 effect sizes from 45 studies.ResultsResults of the meta-analysis indicate a small but significant overall effect of tDCS on inhibitory control (g = 0.21) which was moderated by target and return electrode placement as well as by the task. The small effect size was further reduced after correction for publication bias.ConclusionBased on the studies included, our meta-analytic approach substantiates previously observed differences between brain regions, i.e., involvement of the right inferior frontal gyrus (rIFG) vs. the right dorsolateral prefrontal cortex (rDLPFC) in inhibitory control. Results indicate a small moderating effect of tDCS on inhibitory control in single-session studies and highlight the relevance of technical and behavioral parameters.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号