首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
基础医学   18篇
临床医学   3篇
内科学   8篇
皮肤病学   1篇
神经病学   13篇
特种医学   2篇
综合类   1篇
预防医学   1篇
药学   3篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2007年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
2.
Hox genes are crucial for body axis specification during embryonic development. Hoxa11 plays a role in anteroposterior patterning of the axial skeleton, development of the urogenital tract of both sexes, and proximodistal patterning of the limbs. Hoxa11 expression is also observed in the neural tube. Herein, we report the generation of a Hoxa11eGFP targeted knock‐in allele in mice in which eGFP replaces the first coding exon of Hoxa11 as an in‐frame fusion. This allele closely recapitulates the reported mRNA expression patterns for Hoxa11. Hoxa11eGFP can be visualized in the tail, neural tube, limbs, kidneys, and reproductive tract of both sexes. Additionally, homozygous mutants recapitulate reported phenotypes for Hoxa11 loss of function mice, exhibiting loss of fertility in both males and females. This targeted mouse line will prove useful as a vital marker for Hoxa11 protein localization during control (heterozygous) or mutant organogenesis. Developmental Dynamics 237:3410–3416, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   
3.
Mobilization of remyelinating cells spontaneously occurs in the adult brain. These cellular resources are specially active after demyelinating episodes in early phases of multiple sclerosis (MS). Indeed, oligodendrocyte precursor cells (OPCs) actively proliferate, migrate to and repopulate the lesioned areas. Ultimately, efficient remyelination is accomplished when new oligodendrocytes reinvest nude neuronal axons, restoring the normal properties of impulse conduction. As the disease progresses this fundamental process fails. Multiple causes seem to contribute to such transient decline, including the failure of OPCs to differentiate and enwrap the vulnerable neuronal axons. Regenerative medicine for MS has been mainly centered on the recruitment of endogenous self-repair mechanisms, or on transplantation approaches. The latter commonly involves grafting of neural precursor cells (NPCs) or neural stem cells (NSCs), with myelinogenic potential, in the injured areas. Both strategies require further understanding of the biology of oligodendrocyte differentiation and remyelination. Indeed, the success of transplantation largely depends on the pre-commitment of transplanted NPCs or NSCs into oligodendroglial cell type, while the endogenous differentiation of OPCs needs to be boosted in chronic stages of the disease. Thus, much effort has been focused on finding molecular targets that drive oligodendrocytes commitment and development. The present review explores several aspects of remyelination that must be considered in the design of a cell-based therapy for MS, and explores more deeply the challenge of fostering oligodendrogenesis. In this regard, we discuss herein a tool developed in our research group useful to search novel oligodendrogenic factors and to study oligodendrocyte differentiation in a time- and cost-saving manner.  相似文献   
4.
5.
High grade gliomas are known to release excitotoxic concentrations of glutamate, a process thought to contribute to their malignant phenotype through enhanced autocrine stimulation of their proliferation and destruction of the surrounding nervous tissue. A model of C6 glioma cells in which expression of the high affinity glutamate transporter GLT-1 can be manipulated both in vivo and in vitro was used in order to investigate the consequences of increasing glutamate clearance on tumour progression. These cells were grafted in the striatum of Wistar rats and doxycycline was administered after validation of tumour development by magnetic resonance imaging. Both GLT-1 expression examined by immunohistochemistry and glutamate transport activity measured on synaptosomes appeared robustly increased in samples from doxycycline-treated animals. Moreover, these rats showed extended survival times as compared to vehicle-treated animals, an effect that was consistent with volumetric data revealing delayed tumour growth. As constitutive deficiency in glutamate clearance at the vicinity of brain tumours is well established, these data illustrate the potential benefit that could be obtained by enhancing glutamate transport by glioma cells in order to reduce their invasive behaviour.  相似文献   
6.
7.
8.
Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.  相似文献   
9.
目的研究大鼠神经干细胞(NSCs)分化后与尾状核神经元共培养时是否形成突触连接.方法分离培养大鼠NSCs及尾状核神经元,用绿色荧光蛋白重组腺相关病毒(eGFP)转染NSCs;将eGFP-NSCs 分化后和大鼠尾状核神经元共培养,利用免疫细胞化学方法和激光共聚焦显微镜分析结果.结果 eGFP-NSCs分化的神经元与尾状核神经元共培养时,两者有突触连接形成.结论 NSCs分化的神经元具有形成神经网络的能力.  相似文献   
10.
The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号