首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
神经病学   1篇
药学   1篇
  2011年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In this study the effects of nitric oxide (NO) donors on intracellular free calcium ([Ca2+]i) in human platelets was examined. Inhibition of guanylyl cyclase (GC) with either methylene blue or ODQ slightly inhibited the ability of submaximal concentrations of thrombin to increase [Ca2+]i which suggests that a small portion of the thrombin mediated increase in [Ca2+]i was due to an increase in NO and subsequent increase in cGMP and activation of cGMP dependent protein kinase (cGPK). Thrombin predominantly increases [Ca2+]i by stimulating store-operated Ca2+ entry (SOCE). The NO donor GEA3162 was previously shown to stimulate SOCE in some cells. In platelets GEA3162 had no effect to increase [Ca2+]i however it inhibited the ability of thrombin to increase [Ca2+]i and this effect was reversed by ODQ. The addition of low concentrations (2.0 - 20 nM) of the NO donor sodium nitroprusside (SNP) slightly potentiated the ability of thrombin to increase [Ca2+]i whereas higher concentrations (> 200 nM) of SNP inhibited thrombin induced increases in [Ca2+]i. Both of these effects of SNP were reversed by ODQ which implies that they were both mediated by cGPK. Ba2+ influx was stimulated by low concentrations (2.0 nM) of SNP and inhibited by high concentrations (> 200 nM) of SNP and both effects were inhibited by ODQ. Previous studies showed that Ba2+ influx was blocked by the SOCE inhibitors 2-aminoethoxydipheny borate and diethylstilbestrol. It was concluded that low levels of SNP can stimulate SOCE in platelets and this effect may account for the increased aggregation and secretion previously observed with low concentrations of NO donors. Of the proteins known to be involved in SOCE (e.g. stromal interaction molecule 1 (Stim1), Stim2 and Orai1) only Stim2 has cGPK phosphorylation sites. The possibility that Stim2 phosphorylation regulates SOCE in platelets is discussed.  相似文献   
2.
The important role of cGMP and cGMP-dependent protein kinase (cGPK) for the inhibition of platelet activation and aggregation is well established and due to the inhibition of fundamental platelet responses such as agonist-stimulated calcium increase, exposure of adhesion receptors and actin polymerization. The diversity of cGMP binding proteins and their synergistic interaction with cAMP signaling in inhibiting platelets indicates that a variety of cGMP targets contribute to its antiplatelet action. Since stimulation of G(i)-proteins was recently shown to be essential for complete platelet activation/aggregation, the possibility that G(i)-signaling events are cGMP/cGPK targets was investigated. Thus, the effect of elevated cGMP levels and selective cGPK activation on purinergic and adrenergic receptor-evoked decrease of platelet cAMP content was closely examined. Experiments with a selective activator of cGPK demonstrate for the first time a cGMP-caused G(i)-protein inhibition and our data suggest that this effect is mediated by cGPK. Considering the essential role of G(i)-signaling for platelet activation, we propose that inhibition of G(i)-mediated signaling by cGMP/cGPK is an important mechanism of action underlying the platelet inhibition by cGMP-elevating endothelium derived factors and drugs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号