首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   3篇
基础医学   7篇
神经病学   97篇
药学   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2010年   6篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   7篇
  1997年   8篇
  1996年   11篇
  1995年   3篇
  1994年   7篇
  1993年   10篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
1.
The organization of sensory afferents in the antennular nerve (AN) of the spiny lobster and the central arborization of the afferents in the lateral and medial antennular neuropils (LAN, MAN) were analyzed by backfilling the AN with biocytin. The MAN receives primarily thick afferents (diameter ≥ 10 μm) with a consistent pattern of arborization from the medial of the three major divisions of the AN. The LAN, in contrast, receives many thin to medium-sized afferents (diameter ≤ 0.3–5 μm), in addition some with diameters ≥ 5 μm, from the lateral and dorsal divisions of the AN. In contrast to the consistent pattern of arborization in the MAN, afferents projecting to the LAN arborize in widely different patterns. Serially arranged, orthogonal side branches that are suggestive of topographical representation of the serially arranged sensilla on the antennule contribute to the stratification of the LAN. Together with existing electrophysiological data, these morphological findings are consistent with the idea that the MAN receives primarily mechanosensory (largely statocyst) input, as previously thought, but that the LAN receives chemosensory as well as mechanosensory input. The chemosensory input to the LAN would represent a novel pathway for processing chemosensory input from the antennule.  相似文献   
2.
The results of electrical stimulation experiments [Bullier et al., (1988) Exp. Brain Res., 70, 90 - 98] demonstrated that afferents from areas 18 and 19 contact different functional types of neurons in area 17. We were therefore interested in examining whether these results could be explained by differences in the morphology of the terminals of these two groups of afferent connections to area 17. We also wanted to confirm, by a direct method, our earlier results [Salin et al. (1989) J. Comp. Neurol., 283, 486 - 512] that cortical afferents to area 17 in the cat present extensive divergences. We therefore placed small injections of anterograde tracers in areas 18 and 19 and examined the laminar distributions of terminals thus revealed and the extent of the surface of area 17 contacted by these terminals. Three tracers were used: wheat germ agglutinin - horseradish peroxidase (WGA - HRP), Phaseolus vulgaris leucoagglutinin (Pha-L) and biocytin. The results show that the divergence of these afferent connections are very extensive: 7 - 8 mm in the rotrocaudal direction and 3.5 - 6 mm in the mediolateral direction. In other words, neurons located in a region a few hundreds micron wide in areas 18 or 19 contact a region of area 17 covering several millimeters. Corticocortical connections are therefore not organized in a point-to-point fashion but are strongly divergent. The laminar distributions of terminals from areas 18 and 19 displayed a specific pattern. Area 19 projects most heavily to layers 5 and 6, also terminates in layers 1 - 3 and very little is present in layer 4. In contrast, the afferent terminals from area 18 are heaviest in layers 1, 2, 3, 4A and 5 and are rare in layer 6. Injections placed at different depths in area 18 revealed that upper layer neurons in that area mostly project to layers 1, 2, 3 and 5 in area 17, whereas lower layer neurons send their heaviest projections to layers 4A, 5 and 6 and hardly project to layers 1, 2 and 3.  相似文献   
3.
It has been suggested that in mammals, trigeminal lamina I neurons play a role in the processing and transmission of sensory information from the orofacial region. We investigated the physiological and morphological properties of trigeminal subnucleus caudalis (Sp5C) lamina I neurons in slices prepared from the medulla oblongata of 13- to 15-day-old postnatal rats using patch-clamp recordings and subsequent biocytin-streptavidin-Alexa labeling. Twenty-five neurons were recorded and immunohistochemically stained. The Sp5C lamina I consisted of several types of neurons which, on the basis of their responses to somatic current injection, can be classified into four groups: tonic neurons, which fired throughout the depolarizing pulse; phasic neurons, which expressed an initial burst of action potentials; delayed onset neurons, which showed a significant delay of the first action potential; and single spike neurons, characterized by only one to five action potentials at the very beginning of the depolarizing pulse even at high levels of stimulation intensity. Electrical stimulation of the spinal trigeminal tract evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSC) exhibiting a strong polysynaptic component. AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSC) were characterized by a 10-90% rise time of 0.50+/-0.06 ms and a decay time constant of 2.5+/-0.5 ms. The kinetic properties of NMDA receptor-mediated EPSCs were measured at +40 mV. The 10-90% rise time was 8+/-2 ms and the deactivation time constants were 94+/-31 and 339+/-72 ms, respectively. Intracellular staining and morphological analysis revealed three groups of neurons: fusiform, pyramidal, and multipolar. Statistical analysis indicated that the electrophysiological properties and morphological characteristics are correlated. Tonic and phasic neurons were fusiform or pyramidal and delayed onset and single spike neurons were multipolar. Our results show that both the physiological and morphological properties of Sp5C lamina I neurons exhibit significant differences, indicating their specific integration in the processing and transmission of sensory information from the orofacial region.  相似文献   
4.
Morphological features of rat pedunculopontine projection neurons were investigated in in vitro preparation by using intracellular labeling with biocytin combined with choline acetyltransferase (ChAT) immunohistochemistry. These neurons were classified into two types (Type I and II), based on their electrical membrane properties: Type I had low-threshold Ca2+ spikes, and Type II had A-current. All Type I neurons (n = 17) were ChAT immunonegative (ChAT). Type II neurons were either ChAT immunopositive (ChAT+; n = 49) or ChAT (n = 20). In terms of topography in the tegmental pedunculopontine nucleus (PPN), Type I neurons were dispersed throughout the extent of the nucleus, whereas Type II neurons tended to be located more in the rostral and middle sections. Both Type I and II neurons consisted of small (long axis <20 μm), medium (20–35 μm), and large (>35 μm) cells. The small cells were round or oval; medium cells were round, triangular, or fusiform; and the large cells were primarily fusiform in shape. In terms of the soma size, there was a difference in Type I (15–38 μm) and Type II (11–50 μm) neurons, but no significant difference was found between Type II ChAT and ChAT cells. Both types of neurons had three to six primary dendrites, but the dendritic field was more prominent in Type II neurons. Most of the axons originated from one of the primary dendrites, which gave off axon collaterals, some of which projected out of the nucleus. The intrinsic collaterals were thin and branched party within the dendritic field of the parent cell. The extrinsic collaterals were thicker and could be grouped into three categories: 1) collaterals arborizing in the substantia nigra; 2) collaterals ascending mainly toward the thalamus, pretectal, and tectal area; and 3) collaterals descending toward the mesencephalic and/or pontine reticular formation. It was noted that the collaterals of both ChAT+ and ChAT neurons were traced into the substantia nigra. There was no significant difference in antidromic latencies between Type I (m = 1.47 msec) and Type II (m = 1.36 msec) neurons following electrical stimulation of the substantia nigra. © 1996 Wiley-Liss, Inc.  相似文献   
5.
The lateral lemniscus contains relay nuclei of the auditory pathway in which the neurons have been grouped into dorsal and ventral (VNLL) nuclei. The data about the cytoarchitecture of the VNLL are controversial and no agreement exists concerning its tonotopical organization. In this paper, the cytoarchitecture of VNLL and the spatial distribution of its neurons projecting to the central nucleus of the inferior colliculus (CNIC) have been studied by using different tracers. Rats were iontophoretically injected in the CNIC and grouped in three sets. Group 1 rats received large injections of biotinylated dextran amine (BDA). Group 2 animals received restricted single injections of BDA in the low-, medium-, or high-frequency regions of the CNIC. Group 3 rats were double injected, with horseradish peroxidase placed in the high-frequency region of the CNIC, and with biocytin in the low-frequency one. The distribution of retrogradely labeled neurons in the ipsilateral VNLL was three-dimensionally reconstructed by use of a computer microscope. The analysis of labeled neurons and Nissl material suggests that the VNLL contains flat stellate neurons. Labeled flat stellate neurons and fibers are oriented in parallel and form fibrodendritic laminae. The projection from the VNLL to the CNIC is topographically organized: neurons in peripheral laminae project to dorsolateral, low-frequency regions of the CNIC, and those of central laminae project to ventromedial, high-frequency regions. Each VNLL lamina forms a continuous ventrodorsal structure which resembles a helicoid. © 1996 Wiley-Liss, Inc.  相似文献   
6.
The rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) contains excitatory and inhibitory burst neurons that are related to the control of vertical and torsional eye movements. In the present study, light microscopic examination of the immunohistochemical localization of amino acid neurotransmitters demonstrated that the riMLF in the cat contains overlapping populations of neurons that are immunoreactive to the putative inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitters glutamate and aspartate. By using a double-labelling paradigm, GABA-, glutamate-, and aspartate-immunoreactive neurons in the riMLF were retrogradely labelled by transport of horseradish peroxidase (HRP) from the oculomotor and trochlear nuclei. Electron microscopy showed that the oculomotor and trochlear nuclei contain synaptic endings that are immunoreactive to GABA, glutamate, or aspartate. Each neurotransmitter-specific population of synaptic endings has distinctive ultrastructural and synaptic features. Synaptic endings in the oculomotor and trochlear nuclei that are anterogradely labelled by transport of biocytin from the riMLF are immunoreactive to GABA, glutamate, or aspartate. Taken together, the findings from these complimentary retrograde and anterograde double-labelling studies provide rather conclusive evidence that GABA is the inhibitory neurotransmitter, and glutamate and aspartate are the excitatory neurotransmitters, utilized by premotor neurons in the riMLF that are related to the control of vertical saccadic eye movements. © 1996 Wiley-Liss, Inc.  相似文献   
7.
Our previous study has indicated that accommodative responses can be evoked with weak currents applied to a circumscribed area of the superior colliculus in the cat. We investigated efferent projections from this area with biocytin in the present study. The accommodation area in the superior colliculus was identified by systematic microstimulation in each of five anesthetized cats. Accommodative responses were detected by an infrared optometer. After mapping the superior colliculus, biocytin was injected through a glass micropipette into the accommodation area, where accommodative responses were elicited with low-intensity microstimulation. In addition, accommodative responses to stimulation of the superior colliculus were compared before and after an injection of muscimol, an agonist of inhibitory neurotransmitter, into the pretectum. Following the injection of biocytin, in the ascending projections, labeled terminals were seen mainly in the caudal portion of the nucleus of the optic tract, the nucleus of the posterior commissure, the posterior pretectal nucleus, the olivary pretectal nucleus, the mesencephalic reticular formation at the level of the oculomotor nucleus, and the lateral posterior nucleus of the thalamus on the ipsilateral side. Less dense terminals were seen in the anterior pretectal nucleus, the zona incerta, and the centromedian nucleus of the thalamus. In the descending projections, labeled terminals were observed mainly in the paramedian pontine reticular formation, the nucleus raphe interpositus, and the dorsomedial portion of the nucleus reticularis tegmenti pontis on the contralateral side. Less dense terminals were also seen in the nucleus of the brachium of the inferior colliculus, the cuneiform nucleus, the medial part of the paralemniscal tegmental field, and the dorsolateral division of the pontine nuclei on the ipsilateral side. Following the injection of muscimol into the pretectum, including the nucleus of the optic tract, the posterior pretectal nucleus, and the nucleus of the posterior commissure, accommodative responses evoked by microstimulation of the superior colliculus were reduced to 33–55% of the value before the injections. These findings suggest that the accommodation area in the superior colliculus projects to the oculomotor nucleus through the ipsilateral pretectal area, especially the nucleus of the optic tract, the nucleus of posterior commissure, and the posterior pretectal nucleus, and also projects to the pupilloconstriction area (the olivary pretectal nucleus), the vergence-related area (the mesencephalic reticular formation), and the active visual fixation-related area (the nucleus raphe interpositus). © 1996 Wiley-Liss, Inc.  相似文献   
8.
There is strong evidence that commissural interneurons, neurons with axons that extend to the contralateral side of the spinal cord, play an important role in the coordination of left/right alternation during locomotion. In this study we investigated the projections of commissural interneurons to motor neurons and other commissural interneurons on the other side of the spinal cord in neonatal rats. To establish whether there are direct contacts between axons of commissural interneurons and motor neurons, we carried out two series of experiments. In the first experiment we injected biotinylated dextran amine (BDA) into the lateral motor column to retrogradely label commissural interneurons that may have direct projections to motor neurons. Stained neurons were recovered in the ventromedial areas of the contralateral gray matter in substantial numbers. In the second experiment BDA was injected into the ventromedial gray matter on one side of the lumbar spinal cord, whereas motor neurons were simultaneously labeled on the opposite side by applying biocytin onto the ventral roots. BDA injections into the ventromedial gray matter labeled a strong axon bundle that arose from the site of injection, crossed the midline in the ventral commissure, and extensively arborized in the contralateral ventral gray matter. Many of these axons made close appositions with dendrites and somata of motor neurons and also with commissural interneurons retrogradely labeled with BDA. The results suggest that commissural interneurons may establish monosynaptic contacts with motor neurons on the opposite side of the spinal cord. Our findings also indicate that direct reciprocal connections between commissural interneurons on the two sides of the spinal cord may also exist.  相似文献   
9.
In the frog Discoglossus pictus and the salamander Plethodon jordani, the morphology and axonal projection pattern of neurons in the medial and dorsal pallium were determined by intracellular biocytin labeling. A total of 77 pallial neurons were labeled in the frog and 58 pallial neurons in the salamander. Within the medial pallium (MP) of the frog, four types of neurons were identified on the basis of differences in their axonal projection pattern. Type I neurons have bilateral projections into telencephalic and diencephalic areas; type II neurons have bilateral projections to telencephalic areas and ipsilaterally descending projections to diencephalic regions; type III neurons have only intratelencephalic connections, and a single type IV neuron has ipsilaterally descending projections. The somata of the four types occupy four nonoverlapping zones. Neurons of the dorsal pallium (DP) project exclusively to the ipsilateral MP and to the dorsal edge of the lateral pallium. In the ventral MP of the salamander, neurons have mostly intratelencephalic projections. Neurons in the dorsal MP project bilaterally to diencephalic and telencephalic regions. Neurons in the medial DP project ipsilaterally to the MP, lateral septum, nucleus accumbens, medial amygdala, and the internal granule layer of the olfactory bulb. In five cases, fibers were found in the commissura hippocampi, but in only two cases could these fibers be followed toward the contralateral MP and septum. Neurons in the lateral DP had no contralateral projections; they projected to the ipsilateral MP and in eight cases to the ipsilateral septum as well. Based on similarities of cytoarchitecture and projection pattern in neurons of the MP and DP, it is proposed that both frogs and salamanders have an MP subdivided into a ventral and dorsal portion, and a DP subdivided into a medial and a lateral portion.  相似文献   
10.
Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号