首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
基础医学   3篇
临床医学   8篇
神经病学   12篇
药学   6篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
The mechanisms responsible for the rate of rise (RR) of cumulative depolarization induced by dorsal root stimulus trains were investigated with intracellular recordings from motoneurones of the rat isolated spinal cord. The NMDA receptor antagonists CPP or APV depressed the cumulative depolarization but not its RR which could still be fast enough to elicit action potential wind-up. RR size was correlated with a slow synaptic potential (detected in CPP or APV solution) with which it shared similar voltage dependence. The NK1 antagonist SR 140333 depressed cumulative depolarization, RR and slow synaptic potentials. It appears that the RR (and the ability to express wind-up) was determined by summation of slow synaptic potentials partly mediated via activation of NK1 receptors.  相似文献   
2.
3.
To study the sensory-motor interaction of spinal processing underlying the neuronal mechanisms of the nociceptive flexion reflex (NFR) and its temporal facilitation, 16 spinal dorsal horn (DH) wide-dynamic-range (WDR) neurons and paired 16 single motor units (SMU) from the gastrocnemius soleus muscle (GS) were simultaneously recorded using extracellular single unit and electromyographic techniques in spinal, halothane-anesthetized rats. The paired DH WDR neuron and GS SMU showed a parallel increase in the firing rate and duration of spike responses to noxious pinch stimuli applied to their common cutaneous receptive field (cRF) on the ipsilateral hind paw skin. Innocuous brush or pressure evoked no, or less, firing in the SMU but evoked a graded increase in spike responses in the simultaneously-recorded WDR neuron. Moreover, both pressure and noxious pinch stimuli evoked a short-lasting after-discharge (for several min) in the WDR neuron but without any after-discharge in the simultaneously-recorded SMU. The paired WDR neuron and SMU also showed a parallel basal response (termed as early and late components according to latency), after-discharge and wind-up of the late response to repetitively applied supra-threshold electrical stimulation (intensity: >1.5 T, duration: 1 ms and frequency: 1 Hz for 15 s). Linear regression and cross-correlation histogram analyses showed that the DH WDR neuron had a significant correlation with the simultaneously-recorded SMU and they were functionally located in the spinally-organized NFR circuitry via polysynaptic connections. Systemic administration of fentanyl, an opioid receptor agonist, resulted in a parallel, naloxone-reversible suppression of both basal late response component and wind-up response in both WDR neuron and SMU paired; however, fentanyl suppressed only the early response of the SMU without any effect on that of the DH WDR neuron. The present results provide new direct evidence showing an essential role of spinal DH WDR neurons in the mediation of spinally-organized NFR as well as its temporal facilitation (wind-up). Based on these data, the spinal DH WDR neuron seems to function as a signal discriminator or frequency encoder of multireceptive primary afferent impulses that may determine excitable level of motor output and the occurrence of a behavioral NFR via polysynaptic connections. Consequently, the spinal WDR neuron-mediated NFR and its temporal facilitation are likely to be modulated by spinal endogenous opioid peptides via opioid receptors on the nociceptive sensory components of the spinally-organized NFR circuitry.  相似文献   
4.
D  nes Budai  Alice A. Larson 《Brain research》1996,710(1-2):197-203
Substance P (SP) as well as excitatory amino acids (EAAs) appear to be released in response to stimulation of primary afferent C-fibers. Activity atN-methyl-d-aspartate (NMDA) receptors is essential for wind-up (the progressive potentiation of C-fiber-evoked responses of single neurons in response to an electrical stimulation), however, the role of SP in wind-up is unclear. To address this, the effects of iontophoretically applied CP-99,994 (a NK-1 receptor antagonist), SP and SP(1–7) (an N-terminal breakdown product of SP), were compared on responses of spinal dorsal horn wide dynamic range (WDR) neurons of the rat. Post-stimulus time histograms (PSTH) were summed over 12 responses to low frequency (0.5 Hz) electrical stimulation of the cutaneous receptive field. Changes in responses of dorsal horn neurons were evaluated by monitoring C-fiber input, wind-up, and the total number of spikes evoked by C-fiber activity in response to the 12 stimuli. The NK-1 receptor antagonist CP-99,994 significantly inhibited the total number of C-spikes and caused a significant reduction in wind-up without changing the C-fiber input, indicating the involvement of NK-1 receptors in wind-up. Application of SP led to an overall increase in the total number of C-fiber evoked responses of dorsal horn neurons and ('-fiber input, however, wind-up, as defined, was significantly decreased following SP. In contrast, substance P(1–7) evoked a long-lasting increase in the total number of C-fiber-related spikes which was initially sustained by a long-lasting increase in the input followed by a longer lasting increase in wind-up, an effect opposite that of CP-99,994. As NMDA activity has been previously shown to be inhibited and then potentiated by SP N-terminal activity over a similar time interval, the present data are consistent with the mediation of wind-up by NMDA and its modulation by SP N-terminal activity. Release of SP in response to noxious stimulation may, therefore, increase primary afferent C-fiber activity (input) whereas an accumulation of SP N-terminal metabolites appears to potentiate wind-up, perhaps via positive modulation of EAA activity.  相似文献   
5.
This study aimed to investigate the effect of tonic nociception on spinal withdrawal reflexes including (1) long lasting spontaneous responses elicited by subcutaneous (s.c.) administration of formalin (2.5%, 50 microl) and bee venom (BV, 0.2 mg/50 microl) into the hind paw and (2) corresponding ipsilateral (primary) and contralateral (secondary) hypersensitivity to noxious pinch and repetitive supra-threshold (1.5 x T) electrical stimuli at different frequencies (3 Hz: wind-up; 20 Hz: after-discharge) in anesthetized spinal rats. Spinal withdrawal reflexes were studied by simultaneously assessing single motor units (SMUs) electromyographic (EMG) activities from the bilateral medial gastrocnemius (MG) muscles. Subcutaneous formalin-induced persistent spontaneous SMU EMG responses were in typical biphasic manner with an apparent silent period (about 13-18 min), but in contrast, BV elicited monophasic long lasting (about 1 h) SMU EMG responses without any resting state. The mechanically and electrically evoked responsiveness of SMUs were enhanced significantly by ipsilateral BV injection, whereas enhanced electrically, but not mechanically, evoked responses (including wind-up and after-discharge) were found at the non-injection site of the contralateral hind paw. However, s.c. administration of formalin was only able to establish ipsilateral hypersensitivity of the SMUs to repeated electrical, not mechanical, stimulation. Neither mechanically nor electrically evoked contralateral hypersensitivity of the SMUs was found during the ipsilateral formalin-induced nociception. For pharmacological intervention, intrathecal administration of the non-N-methyl-d-aspartate (non-NMDA) receptor antagonist CNQX (40 nmol/10 microl), but not the non-competitive NMDA receptor antagonist MK-801 (40 nmol/10 microl), significantly depressed BV-induced contralateral hypersensitivity of the SMUs to repeated 3 Hz (wind-up) and 20 Hz (after-discharge) frequencies of electrical stimulation. Using the extracellular SMU recording technique, we found that s.c. administration of formalin and BV shows a significant difference in long lasting spontaneous firing of SMUs. This is consistent with previous observations in animal behavioral studies. Additionally, contralateral electrically evoked hypersensitivity of the SMUs was found only following BV injection, not in the formalin test. The maintenance and development of BV-induced contralateral hypersensitivity of the spinal withdrawal reflex to noxious electrical stimulation indeed depend on different central pharmacological receptors. The spinal non-NMDA, but not the NMDA, receptors may play important role in BV-induced contralateral central hyperexcitability and sensitization.  相似文献   
6.
Evidence shows that serotonin (5-HT) is involved in the transmission of nociception in the central nervous system. Using a new electrophysiological method of simultaneous recordings in rats we examined the actions of the novel analgesic and high-efficacy 5-HT1A receptor agonist F 13640 as well as those of the opioid receptor agonist fentanyl on simultaneously evoked responses of spinal dorsal horn (DH) wide-dynamic range (WDR) neurons and spinal withdrawal reflexes. Spinal withdrawal reflexes were studied by assessing the activity of single motor units (SMUs) electromyographically (EMG). Like that of 0.02 mg/kg fentanyl, intraperitoneal injection of 0.31 mg/kg of F 13640 markedly inhibited nociceptive pinch-evoked responses as well as C-fiber-mediated late responses including wind-up of both DH WDR neurons and SMUs to suprathreshold (1.5 x T) repeated (3 Hz) electrical stimulation. Specifically, in contrast to no significant depressive effects by fentanyl on 20 Hz electrically evoked after-discharge of DH WDR neurons, the after-discharges of DH WDR neurons and SMUs were significantly inhibited by F 13640 (P < 0.05 and P < 0.001, respectively). The inhibitory effects of F 13640 and fentanyl on responses of DH WDR neurons and SMUs were reversed by the specific antagonists WAY 100635 and naloxone, respectively, further indicating that this 5-HT1A receptor-modulated anti-nociception is mu-opioid receptor independent. For the first time, 5-HT1A receptors are clearly proved to be involved in the progressive wind-up to 3-Hz frequency of electrical stimulation as well as after-discharges of sensory input of DH WDR neurons, and simultaneously recorded motor output of spinal reflexes to 20-Hz frequency of electrical stimulation; this suggests that serotonin, through 5-HT1A receptors, exerts an inhibitory role in the control of obstinate pathological pain.  相似文献   
7.
Previous behavioural evidence has shown that NK1 receptor gene knockout (NK1 −/−) mice display altered nociceptive responses following tissue or peripheral nerve injury. A single electrophysiological study reported an attenuation of wind-up and responses to mustard oil application. Although the behavioural results implicate SP and its receptor (NK1-R) in the transmission of noxious high intensity pain, little is known regarding the spinal neuronal substrates and the modalities involved.

We have addressed this using in vivo electrophysiology and recordings of deep dorsal horn neurones in urethane-anaesthetised C57B6×129/sv mice to reveal a marked deficit in mechanical and thermal coding, selectively encompassing the suprathreshold range of noxious stimuli. The frequency-dependent increase in neuronal activity following repetitive C-fibre stimulation (wind-up) was also abolished in spinal neurones of NK1-R knockout mice. Quantification of the receptive field size of spinal neurones, mapped with low- and high-intensity mechanical punctate stimuli, revealed no differences between NK1 −/− and wildtype mice. We conclude that NK1-Rs are important in the high intensity noxious signalling of acute peripheral (mechanical/thermal) stimuli and this may result from the lack of wind-up and/or the disruption of spinal–bulbo-spinal loops.  相似文献   

8.
All-trans retinoic acid (ATRA), the active metabolite of vitamin A, is involved in the inflammatory reaction and modulates the expression of cyclooxygenase (COX) enzymes and nitric oxide (NO) activity. Since COX enzymes are the substrate of action of COX inhibitors, we studied the analgesic activity of paracetamol (PAR) and its NO-derivative nitroparacetamol (NOP) in the presence and absence of oral ATRA. Nociceptive responses were studied using the recording of single motor units technique in alpha-chloralose anesthetized normal and monoarthritic male Wistar rats. Intravenous PAR was not effective in normal rats. However, after pre-treatment with ATRA, PAR reduced dose-dependently the responses to noxious mechanical stimulation (ID50: 60+/-7 micromol/kg; 9.1 mg/kg), but not wind-up. The analgesic activity of NOP was enhanced after pre-treatment with ATRA either on responses to noxious mechanical stimulation (ID50s: 147+/-2 vs. 46+/-2 micromol/kg) or wind-up (maximal effect of 46+/-1% with 480 micromol/kg vs. 33+/-3% of control with 240 micromol/kg). The administration of ATRA did not modify the effect of PAR and NOP in monoarthritic rats. We conclude that pre-treatment with oral ATRA enhances the analgesic activity of PAR and NOP in acute pain, probably due to a positive modulation of their activity on spinal cord COX enzymes.  相似文献   
9.
We recently reported that peripheral nerve injury produced by sciatic nerve transection induces a persistent increase in the expression of the immunoreactive Fos protein product of the c-fos proto-oncogene, an indicator of neuronal activity, in the lumbar spinal cord of the rat and that local anesthetic blockade of the peripheral neuroma attenuates this long-term expression of Fos6,7. In addition to the sustained activity of the injured afferents, the nerve transection itself results, acutely, in a massive injury-induced neural discharge. In this study we evaluated the effect of blocking this massive injury discharge on the persistence of Fos expression. Just prior to nerve transection we applied the short-acting local anesthetic, lidocaine, to the sciatic nerve. Control injections were made subcutaneously on the dorsum of the neck. We report that injection of the local anesthetic, by either route, significantly reduced the number of fos-like immunoreactive neurons at 2 days after nerve transection. The effect was only observed on neurons in the superficial dorsal horn. These results indicate that along with sustained activity of injured afferents and of reorganization of central circuits after injury, the initial brief discharge at the time of nerve injury contributes to a prolonged increase in the activity of spinal cord neurons.  相似文献   
10.
Emotion can modulate pain and spinal nociception, and correlational data suggest that cognitive-emotional processes can facilitate wind-up-like phenomena (ie, temporal summation of pain). However, there have been no experimental studies that manipulated emotion to determine whether within-subject changes in emotion influence temporal summation of pain (TS-pain) and the nociceptive flexion reflex (TS-NFR, a physiological measure of spinal nociception). The present study presented a series of emotionally charged pictures (mutilation, neutral, erotic) during which electric stimuli at 2 Hz were delivered to the sural nerve to evoke TS-pain and TS-NFR. Participants (n = 46 healthy; 32 female) were asked to rate their emotional reactions to pictures as a manipulation check. Pain outcomes were analyzed using statistically powerful multilevel growth curve models. Results indicated that emotional state was effectively manipulated. Further, emotion modulated the overall level of pain and NFR; pain and NFR were highest during mutilation and lowest during erotic pictures. Although pain and NFR both summated in response to the 2-Hz stimulation series, the magnitude of pain summation (TS-pain) and NFR summation (TS-NFR) was not modulated by picture-viewing. These results imply that, at least in healthy humans, within-subject changes in emotions do not promote central sensitization via amplification of temporal summation. However, future studies are needed to determine whether these findings generalize to clinical populations (eg, chronic pain).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号