首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
基础医学   9篇
内科学   2篇
神经病学   12篇
外科学   1篇
综合类   1篇
预防医学   1篇
药学   30篇
  2013年   1篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
1.
Summary Strips of the porcine small intestine were incubated in vitro and the outflow of 5-hydroxytryptamine (5-HT) was determined by HPLC with electrochemical detection.Spontaneous outflow of 5-HT from the porcine small intestine was reduced by about 70% after removal of the extracellular calcium or by addition of 1 mM gadolinium. Tetrodotoxin reduced the outflow of 5-HT by 30%, an effect which has previously been shown to be caused by inhibition of an excitatory cholinergic input. The sodium channel opener veratridine (up to 100 M) did not affect the outflow of 5-HT. -Conotoxin GVIA (500 nM) or nifedipine (10 M) reduced the outflow of 5-HT only by about 50%, and their effects were not additive. The inhibitory effects of -conotoxin GVIA occurred also in the presence of tetrodotoxin. Elevation of extracellular potassium to 40 mM caused a marked and sustained increase in 5-HT outflow. High potassium evoked release of 5-HT was blocked by -conotoxin GVIA, nifedipine and gadolinium. When -conotoxin GVIA and nifedipine were present in combination, their inhibitory effects on the high potassium evoked 5-HT release vanished. BAY K 8644 (1–10 M) did not facilitate 5-HT release, but markedly reduced the spontaneous and high potassium evoked release of 5-HT.In conclusion, the enterochromaffm cells are endowed with multiple calcium channels, but voltage-sensitive calcium channels of a neuronal L-type which are sensitive to dihydropyridines and -conotoxin GVIA appear to play a major role.Abbreviations 5-HT 5-hydroxytryptamine - 5-HIAA 5-hydroxyindoleacetic acid - TTx tetrodotoxin Correspondence to K. Racke at the above address  相似文献   
2.
We have previously reported that in bovine adrenal chromaffin cells Ptychodiscus brevis toxin-3 (PbTx-3) does not alter the veratridine-induced 22Na influx when given alone, but increases the influx of 22Na when co-applied with either - or -scorpion venom (Wada et al. 1992). In the present study, we characterized [3H]PbTx-3 binding in bovine adrenal chromaffin cells. [3H]PbTx-3 binding was saturable, reversible and of high-affinity with an equilibrium dissociation constant (Kd) of 32.0±4.9 nmol/1 and a maximum binding capacity Bmax of 6.2 ± 1.2 pmol/4 × 106 cells (4.5 ± 0.9 pmol/mg cell protein). A Hill plot revealed the lack of cooperative interaction among the binding sites. Unlabelled PbTx-3 inhibited [3H]PbTx-3 binding with an IC50 of 31 nmol/l. However, tetrodotoxin, veratridine, - and -scorpion venom, or veratridine in combination with either - or -scorpion venom did not alter [3H]PbTx-3 binding. All these results suggest that PbTx-3 binds to a site (site 5) distinct from the previously known four toxin binding sites, which does not gate voltage-dependent Na channels by itself, but is specifically involved in the allosteric modulation of Na channels in adrenal medullary cells. Correspondence to: A. Wada at the above address  相似文献   
3.
Lamotrigine, carbamazepine and oxcarbazepine inhibit veratrine-induced neurotransmitter release from rat brain slices in concentrations corresponding to those reached in plasma or brain in experimental animals or humans after anticonvulsant doses, presumably due to their sodium channel blocking properties. Microdialysis measurements of extracellular glutamate and aspartate were carried out in conscious rats in order to investigate whether corresponding effects occur in vivo. Veratridine (10 M) was applied via the perfusion medium to the cortex and the corpus striatum in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (1 mM in perfusion medium). Maximally effective anticonvulsant doses of carbamazepine (30 mg/kg), oxycarbazepine ( 60 mg/kg) and lamotrigine (15 mg/kg) were given orally.The uptake inhibitor increased extracellular glutamate and aspartate about 2-fold in striatum and about 7-fold and 3-fold, respectively, in cortex. Veratridine caused a further 2–3-fold increase in extracellular glutamate in striatum and cortex, respectively, but its effect on extracellular aspartate was less marked in both areas. None of the anticonvulsant compounds affected the veratridine-induced increases in extracellular glutamate or aspartate in the striatum which were, however, markedly inhibited by tetrodotoxin (1 M) and thus are sensitive to sodium channel blockade. In the cortex, the same drugs at the same doses did cause about 50% inhibition of the veratridine-induced increase in extracellular glutamate. Carbamazepine and to a lesser extent lamotrigine, but not oxcarbazepine, also inhibited the veratridine-induced increase in extracellular aspartate in the cortex.Although our results might seem to support the view that inhibition of glutamate and aspartate release is responsible for the anticonvulsant effects of lamotrigine, carbamazepine and oxcarbazepine, two complementary findings argue against this interpretation. First, as previously shown, inhibition of electrically induced release of glutamate requires 5 to 7 times higher concentrations of these compounds than release elicited by veratrine. Second, the present study indicates that doses totally suppressing convulsions caused no inhibition in the striatum and at best a 50% inhibition in the brain cortex. From this we conclude that the doses used here, although to some extent effective against veratridine, did not suppress the release of GLU and ASP elicited by the normal ongoing electrical activity of the glutamatergic and aspartatergic neurons and that the mechanism of the suppression of convulsions must be sought elsewhere.  相似文献   
4.
A number of neurotoxins from venoms of invertebrates and plants are ligands for voltage-gated Na+ channels and are useful tools for studying Na+ channel function and structure. Using whole-cell recordings from vagal afferent nodose neurons, we studied neurotoxins that target Na+ channels. We asked whether Ts3 (an α-scorpion toxin) and/or veratridine (a lipid-soluble toxin), could modify the TTX-resistant Na+ current generated by vagal afferent nodose neurons. Nodose TTX-resistant current was not affected by Ts3, whereas Ts3 slowed inactivation of the current generated by TTX-sensitive current component. We found that veratridine inhibited the TTX-resistant Na+ currents on rat nodose neurons. Interestingly, veratridine-modified Na+ channels developed a persistent current that accounted for the large tail current observed. We propose that veratridine modifies TTX-resistant Na+ channels through a mechanism distinct from its actions on other voltage-gated Na+ channels.  相似文献   
5.
The simultaneous effect of MK-801 on the baseline- and depolarization (20 microM veratridine or 30 mM high K+)-evoked release of endogenous dopamine, glutamate (Glu), aspartate (Asp), and GABA is investigated in the same preparation of rat striatum isolated nerve endings. MK-801, in the microM range, selectively increases the baseline and high K+ depolarization-evoked release of dopamine, without causing any effect on the baseline or on the high K+-evoked release of Glu, Asp and GABA. In addition to this selective action on dopamine release, MK-801 inhibits the veratridine depolarization-evoked release of all the neurotransmitters tested, including dopamine. In SBFI and fura-2 preloaded striatal synaptosomes, MK-801 inhibits the elevation of internal Na+ (Na(i)) and the elevation of internal Ca2+ (Ca(i)) induced by veratridine depolarization. The elevation of Ca(i) induced by high K+ depolarization is unchanged by MK-801. This study reveals two separate MK-801 actions. (1) The voltage-independent action, which increases dopamine release selectively, and might contribute to the effects of MK-801 on motor coordination. (2) The voltage-dependent action, which inhibits all the veratridine-evoked responses including the evoked release of the excitatory amino acids (which are particularly concentrated in striatum nerve endings), and might contribute to the anticonvulsant and neuroprotective effects of MK-801.  相似文献   
6.
During the last decades it has been shown that trophic molecules released by target, afferent and glial cells play a pivotal role controlling neuronal cell death. Trophic molecules are able to inhibit this regressive event during development as well as during degenerative diseases. One of the mechanisms involved in the control of neuronal survival by afferent cells requires the release of trophic molecules stimulated by electrical activity. It has been demonstrated that veratridine (a depolarizing agent that keeps the Na+ channels opened) induces an increase in neuronal survival. In the present work we show that 3 μM veratridine induced a two-fold increase on the survival of retinal ganglion cells after 48 h in culture. The veratridine effect was inhibited by 50 μM amiloride (an inhibitor of Ca2+ channels), 25 μM benzamil (an inhibitor of Na+ channels), 30 μM dantrolene and 7.5 μM caffeine (both inhibitors of Ca2+ release from the endoplasmatic reticulum) and 10 μM BAPTA-AM (an intracellular Ca2+ chelator). However, 5 μM nifedipine (a selective inhibitor of voltage-dependent -type Ca2+ channels) and 100 μM MK 801 (an inhibitor of NMDA receptors) did not block the veratridine effect. On the other hand, treatment with 10 μM genistein (an inhibitor of tyrosine kinase enzymes), 20 μM fluorodeoxyuridine (an inhibitor of cell proliferation) or 10 μM atropine (an antagonist of muscarinic receptors) completely abolished the effect of veratridine. Taken together, our results indicate that veratridine increases the survival of rat retinal ganglion cells through mechanisms involving Na+ influx, intracellular Ca2+ release, activation of tyrosine kinase enzymes and cellular proliferation. They also indicate that cholinergic activity plays an important role in the veratridine effect.  相似文献   
7.
Veratridine and high K+-induced μ-opioid receptor (MOR) internalization in rat spinal cord slices by evoking opioid release. Veratridine induced up to 75% MOR internalization but showed an atypical concentration–response: its effect increased steeply from 5 μM to 10 μM, and declined thereafter to disappear at 100 μM. At 100 μM, veratridine also inhibited of MOR internalization induced by exogenous endomorphin-2. This inhibition was caused by Na+ entry, since the Na+ ionophore monensin (50 μM) also inhibited endomorphin-induced MOR internalization. In contrast, veratridine induced neurokinin 1 receptor internalization (by evoking substance P release) without any inhibition at high concentrations. KCl evoked up to 80% MOR internalization, which disappeared in the presence of lidocaine or in the absence of peptidase inhibitors, indicating that it involved neuronal firing and peptide release. Unlike veratridine, KCl did not inhibit MOR internalization at high concentrations. However, both KCl and veratridine evoked more MOR internalization when applied for 2 min than for 20 min because of a direct inhibition of MOR internalization with the longer incubation times. These results show that short incubations with 20 μM veratridine or 30 mM KCl are optimal stimuli to evoke opioid release and MOR internalization in the spinal cord.  相似文献   
8.
9.
We examined the effects of riluzole, a neuroprotective drug, on voltage–dependent Na channels, nicotinic receptors, and voltage-dependent Ca channels, as well as catecholamine secretion, in comparison with those of verapamil and nicardipine, in primary cultures of bovine adrenal chromaffin cells. Riluzole inhibited veratridine-induced 22Na influx via voltage-dependent Na channels even in the presence of ouabain, an inhibitor of Na,K-ATPase. Blockade of Na channels by riluzole was concentration-dependent with an IC50 of 5.3 μM. It was associated with a similar concentration-related reduction of veratridine-induced 45Ca influx via voltage-dependent Ca channels, and of catecholamine secretion. Riluzole had no effect on 45Ca influx caused by high K, which directly activates voltage-dependent Ca channels, and on nicotine-induced 22Na influx, which passes through the nicotinic receptors. Verapamil and nicardipine attenuated 22Na influx caused by veratridine or nicotine at the same concentrations as they suppressed high K-induced 45Ca influx. The inhibitory effect of riluzole on veratridine-induced 22Na influx disappeared at high concentrations of veratridine. A potentiation of veratridine (site 2 toxin)-induced 22Na influx caused by α-scorpion venom (site 3 toxin), β-scorpion venom (site 4 toxin), or brevetoxin PbTx-3 (site 5 toxin), occurred in the presence of riluzole in the same manner as in control cells. These results suggest that riluzole binds to the veratridine site in voltage–dependent Na channels. It does not impair the cooperative interaction between the functional peptide segments of Na channels, but selectively inhibits gating of Na channels, thereby reducing Ca influx via Ca channels and catecholamine secretion. In contrast, verapamil and nicardipine suppress Na influx both Na channels and nicotinic receptors. Received: 4 November 1997 / Accepted: 11 February 1998  相似文献   
10.
The effect of glucose upon the handling of22Na+ by pancreatic islets was investigated. Using a triple-isotope technique, the apparent concentration of Na+ in islet cells was estimated at 50–75 mM. The pattern of22Na+ efflux from perifused islets indicates that this intracellular Na+ load is compartmentalized among a small, possibly organelle-bound pool characterized by a low fractional turnover rate (5%/min) and a large, presumably cystosolic pool displaying a much higher fractional turnover rate (20–34%/min). Glucose provokes a rapid, pronounced and sustained increase in the fractional outflow rate of Na+ across the plasma membrane and, under steady-state conditions, moderately reduces the concentration of Na+ inside the islet cells. The glucose-induced increase in Na+ outflow rate, which is also observed in response to glyceraldehyde and does not require the presence of extracellular Ca2+, might be mediated, in part at least, by an ouabain-resistant ionophoretic system. The experimental data suggest that glucose also increases the inward transport of Na+ in islet cells by a veratridine-sensitive channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号