首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
临床医学   1篇
神经病学   5篇
综合类   1篇
药学   3篇
中国医学   1篇
  2022年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   3篇
  2006年   2篇
  2002年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
目的:通过研究大鼠糖尿病神经病理性疼痛(DNP)中背根神经节(DRG)神经元TTX-R钠离子通道特征的变化,以探讨此疾病引起痛觉过敏可能的发生机制。方法:8只SD大鼠腹腔注射链尿佐菌素诱导制作糖尿病神经病理性疼痛模型(DNP组),取L56DRG,贴壁消化法行神经元培养,电生理全细胞膜片钳记录离子通道电流;8只同月龄大鼠为正常对照。结果:大鼠糖尿病神经病理性疼痛小直径DRG神经元TTX-R INa电流密度较对照组增高。与对照组比较激活曲线向超极化移动3.9 mV(P<0.05),DNP组具有重复放电的神经元的比率增加。结论:大鼠糖尿病神经病理性疼痛小直径DRG神经元TTX-R钠通道电流的变化是痛觉过敏形成的原因之一。  相似文献   
2.
Neurotoxins are important tools to explore the structure and function relationship of different ion channels. From the venom of Chinese spider Chilobrachys jingzhao, a novel toxin, Jingzhaotoxin-IV (JZTX-IV), is isolated and characterized. It consists of 34 amino acid residues including six acidic residues clustered with negative charge (pI=4.29). The full-length cDNA of JZTX-IV encodes an 86-amino acid precursor containing a signal peptide of 21 residues, a mature peptide of 34 residues and an intervening sequence of 29 residues with terminal Lys-Gly as the signal of amidation. Under whole-cell patch clamp conditions, JZTX-IV inhibits current and slows the inactivation of sodium channels by shifting the voltage dependence of activation to more depolarized potentials on DRG neurons, therefore, differs from the classic site 4 toxins that shift voltage dependence of activation in the opposite direction. In addition, JZTX-IV shows a slowing inactivation of sodium channel with a hyperpolarizing shift of the steady-state inactivation on acutely isolated rat cardiac cell and DRG neurons, differs from the classic site 3 toxins that do not affect the steady-state of inactivation. At high concentration, JZTX-IV has no significant effect on tetrodotoxin-resistant (TTX-R) sodium channels on rat DRG neurons and tetrodotoxin-sensitive (TTX-S) sodium channels on hippocampal neurons. Our data establish that, contrary to known toxins, JZTX-IV neither binds to the previously characterized classic site 4, nor site 3 by modifying channel gating, thus making it a novel probe of channel gating in sodium channels with potential to shed new light on this process.  相似文献   
3.
Wang M  Liu Q  Luo H  Li J  Tang J  Xiao Y  Liang S 《Biochemical pharmacology》2008,76(12):1716-1727
Naturally occurring toxins are invaluable tools for exploration of the structure and function relationships of voltage-gated sodium channels (VGSCs). In this study, we isolated and characterized a novel VGSC toxin named jingzhaotoxin-II (JZTX-II) from the tarantula Chilobrachys jingzhao venom. JZTX-II consists of 32 amino acid residues including two acidic and two basic residues. Cloned and sequenced using 3'- and 5'-rapid amplification of the cDNA ends, the full-length cDNA for JZTX-II was found to encode a 63-residue precursor which contained a signal peptide of 21 residues, a propeptide of 10 residues and a mature peptide of 32 residues. Under whole-cell voltage-clamp conditions, JZTX-II significantly slowed rapid inactivation of TTX-resistant (TTX-R) VGSC on cardiac myocytes with the IC50=0.26+/-0.09 microM. In addition, JZTX-II had no effect on TTX-R VGSCs on rat dorsal root ganglion neurons but exerted a concentration-dependent reduction in tetrodotoxin-sensitive (TTX-S) VGSCs accompanied by a slowing of sodium current inactivation similar to delta-ACTXs. It is notable that TTX-S VGSCs on cultured rat hippocampal neurons were resistant to JZTX-II at high dose. Based on its high selectivity for mammalian VGSC subtypes, JZTX-II might be an important ligand for discrimination of VGSC subtypes and for exploration of the distribution and modulation mechanisms of VGSCs.  相似文献   
4.
We examined the effect of diabetes on the fenvalerate-induced nociceptive response in mice. The intrathecal (i.t.) or intraplantar (i.pl.) injection of fenvalerate, a sodium channel activator, induced a characteristic behavioral syndrome mainly consisting of reciprocal hind limb scratching directed towards caudal parts of the body and biting or licking of the hind legs in both non-diabetic and diabetic mice. However, the intensity of such fenvalerate-induced nociceptive responses was significantly greater in diabetic mice than in non-diabetic mice. Calphostin C (3 pmol, i.t.), a selective protein kinase C inhibitor, significantly inhibited intrathecal fenvalerate-induced nociceptive behavior with a rightward shift of the dose-response curve for fenvalerate-induced nociceptive behavior to the level those observed in non-diabetic mice. On the other hand, when non-diabetic mice were pretreated with phorbol-12, 13-dibutyrate (50 pmol, i.t.), the dose-response curve for intrathecal fenvalerate-induced nociceptive behavior was shifted leftward to the level those observed in diabetic mice. These results suggest that the sensitization of sodium channels, probably tetrodotoxin-resistant (TTX-R) sodium channels, by the long-term activation of protein kinase C may play an important role in the enhancement of the duration of fenvalerate-induced nociceptive behavior in diabetic mice.  相似文献   
5.
The aim of the present study was to investigate whether a GABAB receptor agonist could modulate ATP-activated neuronal excitability of nociceptive TRG neurons using perforated whole-cell patch-clamp and immunohistochemical techniques. Immunohistochemical analysis revealed that 86% of P2X3 receptor-immunoreactive, small-diameter TRG neurons co-expressed GABAB receptor. Under voltage-clamp conditions (Vh = −60 mV), application of ATP activated the inward current in acutely isolated rat TRG neurons in a dose-dependent manner (10–50 μM) and this current could be blocked by pyridoxal-phosphate-6-azophenyl-27,47-disulfonic acid (PPADS) (10 μM), a selective P2 purinoreceptor antagonist. The peak amplitude of ATP-activated currents was significantly inhibited after application of GABAB receptor agonist, baclofen (10–50 μM), in a concentration-dependent and reversible manner. The baclofen-induced inhibition of ATP-activated current was abolished by co-application of 3-amino-2 (4-chlorophenyl)-2hydroxypropysufonic acid) saclofen, a GABAB receptor antagonist (50 μM). Under current-clamp conditions, application of 20 μM ATP significantly depolarized the membrane potential resulting in increased mean action potential frequencies, and these ATP-induced effects were significantly inhibited by baclofen and these effects were antagonized by co-application of saclofen. Together, the results suggested that GABAB receptor activation could inhibit the ATP-induced excitability of small-diameter TRG neurons activated through the P2X3 receptor. Thus, the interaction between P2X3 and GABAB receptors of small-diameter TRG neuronal cell bodies is a potential therapeutic target for the treatment of trigeminal nociception.  相似文献   
6.
Previous research has demonstrated that diabetes induced learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Sprague-Dawley rats were used in the present study to investigate the effect of streptozotocin (STZ)-induced diabetes on spatial learning and memory with the Morris water maze. The excitability of CA1 pyramidal neurons in hippocampus was also examined. Diabetes impaired spatial learning and memory of rats. Diabetes decreased the membrane excitability of CA1 pyramidal neurons, effects which may contribute to the behavioral deficits. To investigate the further ionic mechanisms, the sodium currents and the potassium currents were detected. Diabetes decreased both transient and persistent sodium currents, and increased both transient and sustained potassium currents, which leads to the reduction of neuron excitability and to the increase of firing accommodation. The results of the present study suggested that sodium and potassium currents contributed to the inhibitory effect of diabetes on neuron excitability, further influencing learning and memory processing. Modulating the ion channels and increasing the membrane excitability are possible candidates for preventing the impairments of diabetes on hippocampal function.  相似文献   
7.
Kim TH  Kim HI  Song JH 《Brain research》2006,1072(1):62-71
Nordihydroguaiaretic acid (NDGA) is a lipoxygenase (LO) inhibitor with a strong antioxidant activity. It attenuates nociceptive responses produced by various stimuli, which has been ascribed to its LO inhibition. Primary sensory neurons express multiple Na+ channels that are important in processing normal and abnormal nociception. We examined the effects of NDGA on tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ currents in rat dorsal root ganglion neurons. NDGA inhibited both types of Na+ currents concentration dependently and reversibly. Both activation and inactivation time courses were slowed by NDGA, which were not reversible. NDGA produced a hyperpolarizing shift of the steady-state inactivation curves and reduced the maximal availability of both Na+ currents, indicating that it blocks both inactivated and resting Na+ channels. NDGA shifted the conductance-voltage curves of both Na+ currents toward a depolarizing direction and increased the slope factors of the curves. The recovery of Na+ channels from inactivation was retarded by NDGA. All these effects will reduce the excitability of sensory neurons and should be taken into account when it comes to the antinociceptive effects of NDGA.  相似文献   
8.
We have characterized the actions of ApC, a sea anemone polypeptide toxin isolated from Anthopleura elegantissima, on neuronal sodium currents (I(Na)) using current and voltage-clamp techniques. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study. These cells express tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) I(Na). In current-clamp experiments, application of ApC increased the average duration of the action potential. Under voltage-clamp conditions, the main effect of ApC was a concentration-dependent increase in the TTX-S I(Na) inactivation time course. No significant effects were observed on the activation time course or on the current peak-amplitude. ApC also produced a hyperpolarizing shift in the voltage at which 50% of the channels are inactivated and caused a significant decrease in the voltage dependence of Na+ channel inactivation. No effects were observed on TTX-R I(Na). Our results suggest that ApC slows the conformational changes required for fast inactivation of the mammalian Na+ channels in a form similar to other site-3 toxins, although with a greater potency than ATX-II, a highly homologous anemone toxin.  相似文献   
9.
BackgroundGrowing evidence supports the important role of persistent sodium currents (INaP) in the neuronal excitability of various central neurons. However, the role of tetrodotoxin-resistant (TTX-R) Na+ channel-mediated INaP in the neuronal excitability of nociceptive neurons remains poorly understood.MethodsWe investigated the functional role of TTX-R INaP in the excitability of C-type nociceptive dural afferent neurons, which was identified using a fluorescent dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchloride (DiI), and a whole-cell patch-clamp technique.ResultsTTX-R INaP were found in most DiI-positive neurons, but their density was proportional to neuronal size. Although the voltage dependence of TTX-R Na+ channels did not differ among DiI-positive neurons, the extent of the onset of slow inactivation, recovery from inactivation, and use-dependent inhibition of these channels was highly correlated with neuronal size and, to a great extent, the density of TTX-R INaP. In the presence of TTX, treatment with a specific INaP inhibitor, riluzole, substantially decreased the number of action potentials generated by depolarizing current injection, suggesting that TTX-R INaP are related to the excitability of dural afferent neurons. In animals treated chronically with inflammatory mediators, the density of TTX-R INaP was significantly increased, and it was difficult to inactivate TTX-R Na+ channels.ConclusionsTTX-R INaP apparently contributes to the differential properties of TTX-R Na+ channels and neuronal excitability. Consequently, the selective modulation of TTX-R INaP could be, at least in part, a new approach for the treatment of migraine headaches.Supplementary InformationThe online version contains supplementary material available at 10.1186/s10194-022-01443-7.  相似文献   
10.
AIM OF THE STUDY: Asian scorpion Buthus martensi Karsch (BmK) is widely used to treat neurological symptoms, especially chronic pain, in traditional Chinese medicine for thousands of years. BmK AS, a polypeptide from BmK venom, could produce peripheral potent anti-nociceptive effects in rats. In the present study, spinal anti-nociceptive effects of BmK AS were investigated in rat formalin test. MATERIALS AND METHODS: Spinal anti-nociceptive activity of BmK AS was studied using formalin test in rats. BmK AS in doses of 0.02, 0.1 and 0.5 microg was administered intrathecally before formalin injection 10 min. The suppression by intrathecal injection of BmK AS on formalin-induced spontaneous nociceptive behaviors and spinal c-Fos expression were investigated. RESULTS: Intrathecal injection of BmK AS markedly reduced formalin-evoked biphasic spontaneous nociceptive behaviors in a dose-dependent manner. Formalin-induced c-Fos expression could be dose-dependently inhibited by BmK AS in superficial (I-II), the nucleus proprius (III and IV) and deep (V-VI) dorsal horn laminae, but not in the ventral gray laminae (VII-X) of lumbar spinal cord. The suppression by BmK AS on c-Fos expression in superficial laminaes was much stronger than that in deep laminaes. CONCLUSION: The present study demonstrates that BmK AS is capable of producing remarkable anti-nociceptive effects not only in periphery but also in spinal cord.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号