首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
耳鼻咽喉   1篇
儿科学   1篇
基础医学   5篇
口腔科学   1篇
临床医学   6篇
神经病学   21篇
特种医学   1篇
外科学   7篇
预防医学   1篇
药学   2篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2014年   5篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
《Sleep medicine》2013,14(12):1235-1246
Numerous studies on the high prevalence of sleep disorders in individuals with traumatic brain injury (TBI) have been conducted in the past few decades. These disorders can accentuate other consequences of TBI, negatively impacting mood, exacerbating pain, heightening irritability, and diminishing cognitive abilities and the potential for recovery. Nevertheless, sleep is not routinely assessed in this population. In our review, we examined the selective screening criteria and the scientific evidence regarding screening for post-TBI sleep disorders to identify gaps in our knowledge that are in need of resolution. We retrieved papers written in the English-language literature before June 2012 pertinent to the discussion on sleep after TBI found through a PubMed search. Within our research, we found that sleep dysfunction is highly burdensome after TBI, treatment interventions for some sleep disorders result in favorable outcomes, sensitive and specific tests to detect sleep disorders are available, and the cost-effectiveness and sustainability of screening have been determined from other populations. The evidence we reviewed supports screening for post-TBI sleep dysfunction. This approach could improve the outcomes and reduce the risks for post-TBI adverse health and nonhealth effects (e.g., secondary injuries). A joint sleep and brain injury collaboration focusing on outcomes is needed to improve our knowledge.  相似文献   
5.
The purpose of this study is to develop a reproducible method for quantifying brain lesions in traumatic brain injury (TBI). Quantifying the effects of neuropathology is an important goal in the study of brain injury and disease, yet examiners have encountered significant difficulty quantifying brain lesions in neurotrauma where there may exist multiple, overlapping forms of injury including large focal lesions and more subtle, diffuse hemorrhage and/or shear injury. In the current study, we used conventional MRI to quantify brain lesion volume at separate time points in individuals with severe TBI. We present an automated method (ISODATA) for quantifying brain lesions that is compared against a standard semi-automated volumetric approach. The ISODATA method makes no assumptions about the location or extent of brain lesions, instead identifying areas of neuropathology via voxelwise comparisons of MRI signal intensity. The data reveal that ISODATA overlaps significantly with a semi-automated approach, is reliable across multiple observations, and is sensitive to change in lesion size during recovery from TBI. This study validates a reproducible, automated lesion quantification method used here to determine the location and extent of brain pathology following TBI. This approach may be used in conjunction with advanced imaging techniques to characterize the relationship between brain lesions and neurometabolism and function.  相似文献   
6.
Cellular destruction following ischemic insult may be due to secondary injury mechanisms, not the oxygen-glucose deprivation itself. We have examined the effect of acrolein, an aldehyde product of lipid peroxidation (LPO) and oxidative stress, on the axons in isolated guinea pig spinal cord white matter following ischemic insult. We have found that acrolein at 50 microM, which is unharmful to spinal cord when applied alone, causes action potential conduction failure and membrane disruption following 1 to 2 h of exposure when applied during the reperfusion period. Ischemic insult also exacerbates the effect of acrolein at 200 microM, which does inflict functional and anatomical damage when applied alone. Unlike metabolic poisoning, acrolein-mediated damage is not a function of axonal size and does not affect the refractoriness in response to dual and multiple stimuli. These results indicate that spinal cord axons, in addition to experiencing elevated free radicals, are more vulnerable to acrolein attack when the level of oxygen and glucose is low. We conclude that free radicals and lipid peroxidation in general, and acrolein in specific, may play a critical role in cellular destruction and functional loss in such injury.  相似文献   
7.
8.
The visual system is widely used as a model in which to study neurotrauma of the central nervous system and to assess the effects of experimental therapies. Adult mammalian retinal ganglion cell axons do not normally regenerate their axons for long distances following injury. Trauma to the visual system, particularly damage to the optic nerve or central visual tracts, causes loss of electrical communication between the retina and visual processing areas in the brain. After optic nerve crush or transection, axons degenerate and retinal ganglion cells (RGCs) are lost over a period of days. To promote and maintain axonal growth and connectivity, strategies must be developed to limit RGC death and provide regenerating axons with permissive substrates and a sustainable growth milieu that will ultimately provide long term visual function. This review explores the role olfactory glia can play in this repair. We describe the isolation of these cells from the olfactory system, transplantation to the brain, gene therapy and the possible benefits that these cells may have over other cellular therapies to initiate repair, in particular the stimulation of axonal regeneration in visual pathways. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.  相似文献   
9.
Potential stem cell therapy and application in neurotrauma   总被引:7,自引:0,他引:7  
Traumatic brain injury results from a sudden and external physical insult to the head, which is often accompanied by motor and cognitive impairment. Neurotrauma is characterized not only by focal abnormalities, but rather by multifocal, or even global structural and functional disturbances of the brain network. The impact initially causes necrotic cell death in the underlying tissue, followed by apoptotic cell death in the surrounding tissue due to multiple subsequent events, such as ischemia, excitotoxicity and altered gene expression. These pathological conditions are associated with high morbidity and mortality. Despite the high medical and economical relevance of neurotrauma there are currently no sufficient treatments. Supplementary therapeutic strategies have to be established. Many types of stem cells have the ability to engraft diffusely and become integral members of structures throughout the host CNS. Intrinsic factors appear to derive spontaneously from stem cells and seem to be capable of neuroprotective and/or neuroregenerative functions. Furthermore stem cells can be readily engineered to express specific genes. Such observations suggest that stem cells might participate in reconstructing the molecular and cellular milieu of traumatized brains. In this paper, the state of stem cell research is reviewed and its possible application in neurotrauma will be discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号